SaudxInu commited on
Commit
a6df054
1 Parent(s): 5571e9b

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -40.00 +/- 20.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **SAC** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x79f81ed46b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f81ed54d40>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692294479427158545, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyoClvzzDdj+RIp09LoWHv//tpL6RIp09PrWsvxZztz+RIp09hu6bvl8a0L5zLJ09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8mM0PyJapD8arFg/XiO3vxexIr9dngc/+MeAvxT/tb7u+o4/qAGkPx96hL5YEEK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAmYB0/rcaEPxhh+D5pCDI+yC6bPB9sTj+Lz4G/yoClvzzDdj+RIp09qpzku/20dLsZWlC8muAVPXqrtzz5KRM94MoZvP9dCbzZgNW5YetNP5jwwT7ARF6/OFJzPjT7y77nqoI8Yi94Pi6Fh7//7aS+kSKdPamc5Lv9tHS7pMxQvJvgFT16q7c8+SkTPeDKGbz/XQm884HVuYzhRz/pgHW+TCBGP8ZnRT6hxJA/e2/6PULQgb8+tay/FnO3P5EinT2qnOS7/rR0u6XMTryY4BU9d6u3PPkpEz3gyhm8/10JvAd91bmuuT4/99kgP5RkCL6b4SQ/sMHFvgM1NT+JtJA/hu6bvl8a0L5zLJ09Vi3su34bb7uw8DS8wJoZPQrAszz5KRM9tsoZvCpeCbz/hgQ6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-1.2929928 0.96391654 0.07672609]\n [-1.0587518 -0.32212827 0.07672609]\n [-1.3492811 1.4331996 0.07672609]\n [-0.30455416 -0.4064512 0.07674494]]", "desired_goal": "[[ 0.70465004 1.2840006 0.84637606]\n [-1.4307668 -0.6355147 0.5297602 ]\n [-1.0061026 -0.35546172 1.1170328 ]\n [ 1.2813005 -0.2587442 -0.7580619 ]]", "observation": "[[ 6.14748359e-01 1.03731310e+00 4.85115767e-01 1.73860207e-01\n 1.89432055e-02 8.06337297e-01 -1.01414621e+00 -1.29299283e+00\n 9.63916540e-01 7.67260864e-02 -6.97668362e-03 -3.73393227e-03\n -1.27167935e-02 3.65911499e-02 2.24206336e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07225249e-04]\n [ 8.04372847e-01 3.78788710e-01 -8.68236542e-01 2.37618327e-01\n -3.98400903e-01 1.59506332e-02 2.42368251e-01 -1.05875182e+00\n -3.22128266e-01 7.67260864e-02 -6.97668316e-03 -3.73393227e-03\n -1.27441026e-02 3.65911536e-02 2.24206336e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07233456e-04]\n [ 7.80785322e-01 -2.39749566e-01 7.73930311e-01 1.92778677e-01\n 1.13100064e+00 1.22282945e-01 -1.01416802e+00 -1.34928107e+00\n 1.43319964e+00 7.67260864e-02 -6.97668362e-03 -3.73393251e-03\n -1.26220332e-02 3.65911424e-02 2.24206280e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07196785e-04]\n [ 7.45020747e-01 6.28325880e-01 -1.33196175e-01 6.44067466e-01\n -3.86243343e-01 7.07840145e-01 1.13050950e+00 -3.04554164e-01\n -4.06451195e-01 7.67449364e-02 -7.20755290e-03 -3.64848925e-03\n -1.10437125e-02 3.75010967e-02 2.19421573e-02 3.59287001e-02\n -9.38670896e-03 -8.38426687e-03 5.05551638e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAugIKvlf0wz3Qv6M8JELjvVdcC73Qv6M8mt4Pvl9xEj7Qv6M89oEMvd4xLr37wKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhgV7PbWE4j1cIxg+2qD8vWy/Yr0AjQI+y22xvS4j/7yHlyo+up/jPTSiurwJ+yo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACoyxo+y8SIPibUfj5PgZk7LTCfPKBEjz7baFk1ugIKvlf0wz3Qv6M8VtiMOI46GzfTKFG53q2pt1rbF7aAhE+sd9BLL/4pWy64xfu4vDhEPhrm7T2rAfc7FmGfPJle8r38HEW7Wvs/PSRC471XXAu90L+jPFjYjDiSOhs3AFFbuZOtqbcJ2he2kMpOrGw2TC/qNVwuosr7uJARPz7fA9K8JMiZPqePFDw46sU+64cPPQvxWbGa3g++X3ESPtC/ozxP2Iw4fjobN33qLbnjrqm37N8XtmDNT6ydF0wvcS9ZLqy0+7heQTc+LocxPjzuDT5nsOg9WCbqvcpxej7F1qM99oEMvd4xLr37wKM87PbXN53dlzeBjM45bdIdOF76BLj4Ni4tXGW3Muvrt7KvaWs6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.13477603 0.09568089 0.01998892]\n [-0.110966 -0.03402361 0.01998892]\n [-0.1404976 0.1430106 0.01998892]\n [-0.03430363 -0.04252803 0.01998948]]", "desired_goal": "[[ 0.06128456 0.11060468 0.14857239]\n [-0.12335368 -0.05535834 0.127491 ]\n [-0.08663519 -0.0311447 0.16659366]\n [ 0.1111445 -0.02278242 0.04174331]]", "observation": "[[ 1.51167512e-01 2.67126411e-01 2.48856157e-01 4.68460424e-03\n 1.94321517e-02 2.79820442e-01 8.09913843e-07 -1.34776026e-01\n 9.56808850e-02 1.99889243e-02 6.71601592e-05 9.25235327e-06\n -1.99470014e-04 -2.02273332e-05 -2.26284328e-06 -2.94900215e-12\n 1.85368040e-10 4.98321315e-11 -1.20054407e-04]\n [ 1.91622674e-01 1.16161540e-01 7.53804063e-03 1.94554739e-02\n -1.18344493e-01 -3.00770905e-03 4.68705669e-02 -1.10965997e-01\n -3.40236090e-02 1.99889243e-02 6.71601738e-05 9.25235690e-06\n -2.09156424e-04 -2.02271967e-05 -2.26276666e-06 -2.93868055e-12\n 1.85730265e-10 5.00700939e-11 -1.20063560e-04]\n [ 1.86590433e-01 -2.56366115e-02 3.00355077e-01 9.06745251e-03\n 3.86552572e-01 3.50417309e-02 -3.17146731e-09 -1.40497595e-01\n 1.43010601e-01 1.99889243e-02 6.71601083e-05 9.25233871e-06\n -1.65859194e-04 -2.02278079e-05 -2.26310931e-06 -2.95304753e-12\n 1.85620810e-10 4.93822240e-11 -1.20022654e-04]\n [ 1.78960294e-01 1.73367232e-01 1.38604105e-01 1.13617711e-01\n -1.14330947e-01 2.44574696e-01 7.99994841e-02 -3.43036279e-02\n -4.25280258e-02 1.99894812e-02 2.57449792e-05 1.81037994e-05\n 3.93960654e-04 3.76276912e-05 -3.17044251e-05 9.90296040e-12\n 2.13500968e-08 -2.14112870e-08 8.98028666e-04]]"}, "_episode_num": 20658, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C4BLYWYWtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BROJHiFTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BPhFd9lVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BWNtVJcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BcYUSIxhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Bh8hLXcydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BgQC8vmHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BnEtRNypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BtLLU1AJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BzR+4LCvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Bx1ARkEtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4B49bC79RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4B/B/3FkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CE4mCyyEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CDP+jua4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CK5l4C6pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CROHWSU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CWk78vVWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CU/Ho5ggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CbrEgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Ch4QBgeBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CncFUyYYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ClzIRywOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CtY/eLvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CzqlpGnXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4C6BQzk6tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4C5mNedCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DHCFK02MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DO1KTSssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DXXgDRtxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DXfwd8zAdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4DX68xsVMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dfoj8k2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dl0RnOB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DrVqesgddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DqCgf2bodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dw9GI9DAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D3HzUZvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D8yNsFdLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D7Q/5ckddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EB3tjTa1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EH8o+fRNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ENkTtb9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EMEAksz3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ESf+jua4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EYiy6cy4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EeS2MKkVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EdBTKkmAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EkTiwSrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EqWcvugIdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0C4EuFRpDeCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EwR6jWTYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Eu5c5bQkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4E16KgqVhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FABXfZVXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FCNfw7T2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FA6zE74jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FIWAG0NSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FSOKO1fFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FUcGkep5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FTRWPtD2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FaSdJ8OTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Fj8xj8UFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FmJTMqz7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4Fmn3Dej3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FkxqbjLkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FrHh86V/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F0Z+pfhNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F3DdxhlUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F1NJJ5E/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4F1rux8lYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F+QP3BYWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GKcuBczJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GNNA9mpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GNLmEGqxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GYhDG96DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GiTnmq5tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GkyxiXpodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GjjW9US7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Gp4KhL5AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GzGFWXC1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G1k4WDYidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G0TU7Sy/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G7iSvC/HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HFk1VHWjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HIHarWAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HHQrxy4ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HOCmZVn3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HXlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HaMcIZ62dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HZDZHuqndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HgATmGM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Hpl0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HsGeDnNgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HqzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HxkTDfm+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H77KzRhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H+fx6OYIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H9THbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4IEJwsGxEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmIiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 249975, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x79f81ed25990>", "add": "<function DictReplayBuffer.add at 0x79f81ed25a20>", "sample": "<function DictReplayBuffer.sample at 0x79f81ed25ab0>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x79f81ed25b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79f81ed2c740>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVUAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQ0qqxMUCJfNOo8L8hlPnjJ4wDaW5jlIoRo4jLm4csAF6PyM9ynD9L8AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (628 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -40.0, "std_reward": 20.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-17T19:33:35.344361"}
sac-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2dbfbde3c12f0ae64191ab932a2b5cba68213474c79674758f7ebc5e30d021d
3
+ size 3303563
sac-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
sac-PandaPickAndPlace-v3/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01873b34fec782a9c73bb839a6597516b3e6cc3cebf335097175b4a47db51b60
3
+ size 602525
sac-PandaPickAndPlace-v3/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb2cf665e790453783c8478143042fead3c9ddde57622cfb24830a9750b38c00
3
+ size 1189369
sac-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x79f81ed46b90>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79f81ed54d40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ "use_sde": false
14
+ },
15
+ "num_timesteps": 1000000,
16
+ "_total_timesteps": 1000000,
17
+ "_num_timesteps_at_start": 0,
18
+ "seed": null,
19
+ "action_noise": null,
20
+ "start_time": 1692294479427158545,
21
+ "learning_rate": 0.0003,
22
+ "tensorboard_log": null,
23
+ "_last_obs": {
24
+ ":type:": "<class 'collections.OrderedDict'>",
25
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyoClvzzDdj+RIp09LoWHv//tpL6RIp09PrWsvxZztz+RIp09hu6bvl8a0L5zLJ09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8mM0PyJapD8arFg/XiO3vxexIr9dngc/+MeAvxT/tb7u+o4/qAGkPx96hL5YEEK/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAAmYB0/rcaEPxhh+D5pCDI+yC6bPB9sTj+Lz4G/yoClvzzDdj+RIp09qpzku/20dLsZWlC8muAVPXqrtzz5KRM94MoZvP9dCbzZgNW5YetNP5jwwT7ARF6/OFJzPjT7y77nqoI8Yi94Pi6Fh7//7aS+kSKdPamc5Lv9tHS7pMxQvJvgFT16q7c8+SkTPeDKGbz/XQm884HVuYzhRz/pgHW+TCBGP8ZnRT6hxJA/e2/6PULQgb8+tay/FnO3P5EinT2qnOS7/rR0u6XMTryY4BU9d6u3PPkpEz3gyhm8/10JvAd91bmuuT4/99kgP5RkCL6b4SQ/sMHFvgM1NT+JtJA/hu6bvl8a0L5zLJ09Vi3su34bb7uw8DS8wJoZPQrAszz5KRM9tsoZvCpeCbz/hgQ6lGgOSwRLE4aUaBJ0lFKUdS4=",
26
+ "achieved_goal": "[[-1.2929928 0.96391654 0.07672609]\n [-1.0587518 -0.32212827 0.07672609]\n [-1.3492811 1.4331996 0.07672609]\n [-0.30455416 -0.4064512 0.07674494]]",
27
+ "desired_goal": "[[ 0.70465004 1.2840006 0.84637606]\n [-1.4307668 -0.6355147 0.5297602 ]\n [-1.0061026 -0.35546172 1.1170328 ]\n [ 1.2813005 -0.2587442 -0.7580619 ]]",
28
+ "observation": "[[ 6.14748359e-01 1.03731310e+00 4.85115767e-01 1.73860207e-01\n 1.89432055e-02 8.06337297e-01 -1.01414621e+00 -1.29299283e+00\n 9.63916540e-01 7.67260864e-02 -6.97668362e-03 -3.73393227e-03\n -1.27167935e-02 3.65911499e-02 2.24206336e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07225249e-04]\n [ 8.04372847e-01 3.78788710e-01 -8.68236542e-01 2.37618327e-01\n -3.98400903e-01 1.59506332e-02 2.42368251e-01 -1.05875182e+00\n -3.22128266e-01 7.67260864e-02 -6.97668316e-03 -3.73393227e-03\n -1.27441026e-02 3.65911536e-02 2.24206336e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07233456e-04]\n [ 7.80785322e-01 -2.39749566e-01 7.73930311e-01 1.92778677e-01\n 1.13100064e+00 1.22282945e-01 -1.01416802e+00 -1.34928107e+00\n 1.43319964e+00 7.67260864e-02 -6.97668362e-03 -3.73393251e-03\n -1.26220332e-02 3.65911424e-02 2.24206280e-02 3.59287001e-02\n -9.38674808e-03 -8.38422682e-03 -4.07196785e-04]\n [ 7.45020747e-01 6.28325880e-01 -1.33196175e-01 6.44067466e-01\n -3.86243343e-01 7.07840145e-01 1.13050950e+00 -3.04554164e-01\n -4.06451195e-01 7.67449364e-02 -7.20755290e-03 -3.64848925e-03\n -1.10437125e-02 3.75010967e-02 2.19421573e-02 3.59287001e-02\n -9.38670896e-03 -8.38426687e-03 5.05551638e-04]]"
29
+ },
30
+ "_last_episode_starts": {
31
+ ":type:": "<class 'numpy.ndarray'>",
32
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
33
+ },
34
+ "_last_original_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAugIKvlf0wz3Qv6M8JELjvVdcC73Qv6M8mt4Pvl9xEj7Qv6M89oEMvd4xLr37wKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhgV7PbWE4j1cIxg+2qD8vWy/Yr0AjQI+y22xvS4j/7yHlyo+up/jPTSiurwJ+yo9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACoyxo+y8SIPibUfj5PgZk7LTCfPKBEjz7baFk1ugIKvlf0wz3Qv6M8VtiMOI46GzfTKFG53q2pt1rbF7aAhE+sd9BLL/4pWy64xfu4vDhEPhrm7T2rAfc7FmGfPJle8r38HEW7Wvs/PSRC471XXAu90L+jPFjYjDiSOhs3AFFbuZOtqbcJ2he2kMpOrGw2TC/qNVwuosr7uJARPz7fA9K8JMiZPqePFDw46sU+64cPPQvxWbGa3g++X3ESPtC/ozxP2Iw4fjobN33qLbnjrqm37N8XtmDNT6ydF0wvcS9ZLqy0+7heQTc+LocxPjzuDT5nsOg9WCbqvcpxej7F1qM99oEMvd4xLr37wKM87PbXN53dlzeBjM45bdIdOF76BLj4Ni4tXGW3Muvrt7KvaWs6lGgOSwRLE4aUaBJ0lFKUdS4=",
37
+ "achieved_goal": "[[-0.13477603 0.09568089 0.01998892]\n [-0.110966 -0.03402361 0.01998892]\n [-0.1404976 0.1430106 0.01998892]\n [-0.03430363 -0.04252803 0.01998948]]",
38
+ "desired_goal": "[[ 0.06128456 0.11060468 0.14857239]\n [-0.12335368 -0.05535834 0.127491 ]\n [-0.08663519 -0.0311447 0.16659366]\n [ 0.1111445 -0.02278242 0.04174331]]",
39
+ "observation": "[[ 1.51167512e-01 2.67126411e-01 2.48856157e-01 4.68460424e-03\n 1.94321517e-02 2.79820442e-01 8.09913843e-07 -1.34776026e-01\n 9.56808850e-02 1.99889243e-02 6.71601592e-05 9.25235327e-06\n -1.99470014e-04 -2.02273332e-05 -2.26284328e-06 -2.94900215e-12\n 1.85368040e-10 4.98321315e-11 -1.20054407e-04]\n [ 1.91622674e-01 1.16161540e-01 7.53804063e-03 1.94554739e-02\n -1.18344493e-01 -3.00770905e-03 4.68705669e-02 -1.10965997e-01\n -3.40236090e-02 1.99889243e-02 6.71601738e-05 9.25235690e-06\n -2.09156424e-04 -2.02271967e-05 -2.26276666e-06 -2.93868055e-12\n 1.85730265e-10 5.00700939e-11 -1.20063560e-04]\n [ 1.86590433e-01 -2.56366115e-02 3.00355077e-01 9.06745251e-03\n 3.86552572e-01 3.50417309e-02 -3.17146731e-09 -1.40497595e-01\n 1.43010601e-01 1.99889243e-02 6.71601083e-05 9.25233871e-06\n -1.65859194e-04 -2.02278079e-05 -2.26310931e-06 -2.95304753e-12\n 1.85620810e-10 4.93822240e-11 -1.20022654e-04]\n [ 1.78960294e-01 1.73367232e-01 1.38604105e-01 1.13617711e-01\n -1.14330947e-01 2.44574696e-01 7.99994841e-02 -3.43036279e-02\n -4.25280258e-02 1.99894812e-02 2.57449792e-05 1.81037994e-05\n 3.93960654e-04 3.76276912e-05 -3.17044251e-05 9.90296040e-12\n 2.13500968e-08 -2.14112870e-08 8.98028666e-04]]"
40
+ },
41
+ "_episode_num": 20658,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": 0.0,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0C4BLYWYWtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BROJHiFTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BPhFd9lVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BWNtVJcxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BcYUSIxhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Bh8hLXcydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BgQC8vmHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BnEtRNypdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BtLLU1AJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4BzR+4LCvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Bx1ARkEtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4B49bC79RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4B/B/3FkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CE4mCyyEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CDP+jua4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CK5l4C6pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CROHWSU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CWk78vVWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CU/Ho5ggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CbrEgntwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Ch4QBgeBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CncFUyYYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ClzIRywOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CtY/eLvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4CzqlpGnXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4C6BQzk6tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4C5mNedCmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DHCFK02MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DO1KTSssdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DXXgDRtxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DXfwd8zAdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4DX68xsVMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dfoj8k2QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dl0RnOB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DrVqesgddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4DqCgf2bodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Dw9GI9DAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D3HzUZvUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D8yNsFdLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4D7Q/5ckddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EB3tjTa1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EH8o+fRNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ENkTtb9qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EMEAksz3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4ESf+jua4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EYiy6cy4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EeS2MKkVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EdBTKkmAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EkTiwSrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EqWcvugIdX2UKGgGR8AiAAAAAAAAaAdLCmgIR0C4EuFRpDeCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4EwR6jWTYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Eu5c5bQkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4E16KgqVhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FABXfZVXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FCNfw7T2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FA6zE74jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FIWAG0NSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FSOKO1fFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FUcGkep5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FTRWPtD2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FaSdJ8OTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Fj8xj8UFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FmJTMqz7dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4Fmn3Dej3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FkxqbjLkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4FrHh86V/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F0Z+pfhNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F3DdxhlUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F1NJJ5E/dX2UKGgGRwAAAAAAAAAAaAdLAWgIR0C4F1rux8lYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4F+QP3BYWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GKcuBczJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GNNA9mpVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GNLmEGqxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GYhDG96DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GiTnmq5tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GkyxiXpodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GjjW9US7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Gp4KhL5AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4GzGFWXC1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G1k4WDYidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G0TU7Sy/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4G7iSvC/HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HFk1VHWjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HIHarWAgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HHQrxy4ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HOCmZVn3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HXlNL128dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HaMcIZ62dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HZDZHuqndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HgATmGM5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4Hpl0HQhPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HsGeDnNgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HqzIV/MGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4HxkTDfm+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H77KzRhMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H+fx6OYIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4H9THbRF7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0C4IEJwsGxEdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYmIiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="
53
+ },
54
+ "_n_updates": 249975,
55
+ "buffer_size": 1000000,
56
+ "batch_size": 256,
57
+ "learning_starts": 100,
58
+ "tau": 0.005,
59
+ "gamma": 0.99,
60
+ "gradient_steps": 1,
61
+ "optimize_memory_usage": false,
62
+ "replay_buffer_class": {
63
+ ":type:": "<class 'abc.ABCMeta'>",
64
+ ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=",
65
+ "__module__": "stable_baselines3.common.buffers",
66
+ "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
67
+ "__init__": "<function DictReplayBuffer.__init__ at 0x79f81ed25990>",
68
+ "add": "<function DictReplayBuffer.add at 0x79f81ed25a20>",
69
+ "sample": "<function DictReplayBuffer.sample at 0x79f81ed25ab0>",
70
+ "_get_samples": "<function DictReplayBuffer._get_samples at 0x79f81ed25b40>",
71
+ "__abstractmethods__": "frozenset()",
72
+ "_abc_impl": "<_abc._abc_data object at 0x79f81ed2c740>"
73
+ },
74
+ "replay_buffer_kwargs": {},
75
+ "train_freq": {
76
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
77
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
78
+ },
79
+ "use_sde_at_warmup": false,
80
+ "target_entropy": -4.0,
81
+ "ent_coef": "auto",
82
+ "target_update_interval": 1,
83
+ "observation_space": {
84
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
85
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
86
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
87
+ "_shape": null,
88
+ "dtype": null,
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVUAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQ0qqxMUCJfNOo8L8hlPnjJ4wDaW5jlIoRo4jLm4csAF6PyM9ynD9L8AB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True]",
96
+ "bounded_above": "[ True True True True]",
97
+ "_shape": [
98
+ 4
99
+ ],
100
+ "low": "[-1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": "Generator(PCG64)"
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ },
111
+ "batch_norm_stats": [],
112
+ "batch_norm_stats_target": []
113
+ }
sac-PandaPickAndPlace-v3/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c67449c376bd627168a6dcd80757df9d1e8efd2b4d5fd2732a5a36cc78d0037
3
+ size 1507
sac-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a8fa41da07f3d42ea02aa64024c312faf0c2828437420aeb63f6d3897dda95a
3
+ size 1489349
sac-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88ca04b70c85a7612e87699283d74f656b11eab1c4303631ab4a1729e46da2be
3
+ size 747
sac-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13a8bcd065e1613276d2a4c994574e8702ef4ae2c706f9e21dd0d43d928dd120
3
+ size 3188