|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This implementation is adapted from github repo: |
|
https://github.com/alibaba-damo-academy/3D-Speaker |
|
|
|
Some modifications: |
|
1. Reuse the pooling layers in wespeaker |
|
2. Remove the memory_efficient mechanism to meet the torch.jit.script |
|
export requirements |
|
|
|
Reference: |
|
[1] Hui Wang, Siqi Zheng, Yafeng Chen, Luyao Cheng and Qian Chen. |
|
"CAM++: A Fast and Efficient Network for Speaker Verification |
|
Using Context-Aware Masking". arXiv preprint arXiv:2303.00332 |
|
""" |
|
|
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .wespeaker_campplus import pooling_layers |
|
from .wespeaker_campplus.fbank_feature_extractor import FbankFeatureExtractor |
|
|
|
|
|
def get_nonlinear(config_str, channels): |
|
nonlinear = nn.Sequential() |
|
for name in config_str.split("-"): |
|
if name == "relu": |
|
nonlinear.add_module("relu", nn.ReLU(inplace=True)) |
|
elif name == "prelu": |
|
nonlinear.add_module("prelu", nn.PReLU(channels)) |
|
elif name == "batchnorm": |
|
nonlinear.add_module("batchnorm", nn.BatchNorm1d(channels)) |
|
elif name == "batchnorm_": |
|
nonlinear.add_module("batchnorm", nn.BatchNorm1d(channels, affine=False)) |
|
else: |
|
raise ValueError("Unexpected module ({}).".format(name)) |
|
return nonlinear |
|
|
|
|
|
class TDNNLayer(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=False, |
|
config_str="batchnorm-relu", |
|
): |
|
super(TDNNLayer, self).__init__() |
|
if padding < 0: |
|
assert ( |
|
kernel_size % 2 == 1 |
|
), "Expect equal paddings, \ |
|
but got even kernel size ({})".format( |
|
kernel_size |
|
) |
|
padding = (kernel_size - 1) // 2 * dilation |
|
self.linear = nn.Conv1d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias, |
|
) |
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
def forward(self, x): |
|
x = self.linear(x) |
|
x = self.nonlinear(x) |
|
return x |
|
|
|
|
|
class CAMLayer(nn.Module): |
|
def __init__( |
|
self, |
|
bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias, |
|
reduction=2, |
|
): |
|
super(CAMLayer, self).__init__() |
|
self.linear_local = nn.Conv1d( |
|
bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias, |
|
) |
|
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
y = self.linear_local(x) |
|
context = x.mean(-1, keepdim=True) + self.seg_pooling(x) |
|
context = self.relu(self.linear1(context)) |
|
m = self.sigmoid(self.linear2(context)) |
|
return y * m |
|
|
|
def seg_pooling(self, x, seg_len: int = 100, stype: str = "avg"): |
|
if stype == "avg": |
|
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
elif stype == "max": |
|
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) |
|
else: |
|
raise ValueError("Wrong segment pooling type.") |
|
shape = seg.shape |
|
seg = ( |
|
seg.unsqueeze(-1) |
|
.expand(shape[0], shape[1], shape[2], seg_len) |
|
.reshape(shape[0], shape[1], -1) |
|
) |
|
seg = seg[..., : x.shape[-1]] |
|
return seg |
|
|
|
|
|
class CAMDenseTDNNLayer(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
bn_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
bias=False, |
|
config_str="batchnorm-relu", |
|
): |
|
super(CAMDenseTDNNLayer, self).__init__() |
|
assert ( |
|
kernel_size % 2 == 1 |
|
), "Expect equal paddings, \ |
|
but got even kernel size ({})".format( |
|
kernel_size |
|
) |
|
padding = (kernel_size - 1) // 2 * dilation |
|
self.nonlinear1 = get_nonlinear(config_str, in_channels) |
|
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False) |
|
self.nonlinear2 = get_nonlinear(config_str, bn_channels) |
|
self.cam_layer = CAMLayer( |
|
bn_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
bias=bias, |
|
) |
|
|
|
def bn_function(self, x): |
|
return self.linear1(self.nonlinear1(x)) |
|
|
|
def forward(self, x): |
|
x = self.bn_function(x) |
|
x = self.cam_layer(self.nonlinear2(x)) |
|
return x |
|
|
|
|
|
class CAMDenseTDNNBlock(nn.ModuleList): |
|
def __init__( |
|
self, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
bn_channels, |
|
kernel_size, |
|
stride=1, |
|
dilation=1, |
|
bias=False, |
|
config_str="batchnorm-relu", |
|
): |
|
super(CAMDenseTDNNBlock, self).__init__() |
|
for i in range(num_layers): |
|
layer = CAMDenseTDNNLayer( |
|
in_channels=in_channels + i * out_channels, |
|
out_channels=out_channels, |
|
bn_channels=bn_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation, |
|
bias=bias, |
|
config_str=config_str, |
|
) |
|
self.add_module("tdnnd%d" % (i + 1), layer) |
|
|
|
def forward(self, x): |
|
for layer in self: |
|
x = torch.cat([x, layer(x)], dim=1) |
|
return x |
|
|
|
|
|
class TransitLayer(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, bias=True, config_str="batchnorm-relu" |
|
): |
|
super(TransitLayer, self).__init__() |
|
self.nonlinear = get_nonlinear(config_str, in_channels) |
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.nonlinear(x) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DenseLayer(nn.Module): |
|
def __init__( |
|
self, in_channels, out_channels, bias=False, config_str="batchnorm-relu" |
|
): |
|
super(DenseLayer, self).__init__() |
|
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias) |
|
self.nonlinear = get_nonlinear(config_str, out_channels) |
|
|
|
def forward(self, x): |
|
if len(x.shape) == 2: |
|
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1) |
|
else: |
|
x = self.linear(x) |
|
x = self.nonlinear(x) |
|
return x |
|
|
|
|
|
"""Note: The stride used here is different from that in Resnet |
|
""" |
|
|
|
|
|
class BasicResBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicResBlock, self).__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d( |
|
planes, planes, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d( |
|
in_planes, |
|
self.expansion * planes, |
|
kernel_size=1, |
|
stride=(stride, 1), |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(self.expansion * planes), |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class FCM(nn.Module): |
|
def __init__(self, block, num_blocks, m_channels=32, feat_dim=80): |
|
super(FCM, self).__init__() |
|
self.in_planes = m_channels |
|
self.conv1 = nn.Conv2d( |
|
1, m_channels, kernel_size=3, stride=1, padding=1, bias=False |
|
) |
|
self.bn1 = nn.BatchNorm2d(m_channels) |
|
|
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2) |
|
self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2) |
|
|
|
self.conv2 = nn.Conv2d( |
|
m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False |
|
) |
|
self.bn2 = nn.BatchNorm2d(m_channels) |
|
self.out_channels = m_channels * (feat_dim // 8) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = x.unsqueeze(1) |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
|
|
shape = out.shape |
|
out = out.reshape(shape[0], shape[1] * shape[2], shape[3]) |
|
return out |
|
|
|
|
|
class CAMPPlus(nn.Module): |
|
def __init__( |
|
self, |
|
feat_dim=80, |
|
embed_dim=512, |
|
pooling_func="TSTP", |
|
growth_rate=32, |
|
bn_size=4, |
|
init_channels=128, |
|
config_str="batchnorm-relu", |
|
): |
|
super(CAMPPlus, self).__init__() |
|
|
|
self.feature_extractor = FbankFeatureExtractor(feat_dim=80) |
|
self.head = FCM(block=BasicResBlock, num_blocks=[2, 2], feat_dim=feat_dim) |
|
channels = self.head.out_channels |
|
|
|
self.xvector = nn.Sequential( |
|
OrderedDict( |
|
[ |
|
( |
|
"tdnn", |
|
TDNNLayer( |
|
channels, |
|
init_channels, |
|
5, |
|
stride=2, |
|
dilation=1, |
|
padding=-1, |
|
config_str=config_str, |
|
), |
|
), |
|
] |
|
) |
|
) |
|
channels = init_channels |
|
for i, (num_layers, kernel_size, dilation) in enumerate( |
|
zip((12, 24, 16), (3, 3, 3), (1, 2, 2)) |
|
): |
|
block = CAMDenseTDNNBlock( |
|
num_layers=num_layers, |
|
in_channels=channels, |
|
out_channels=growth_rate, |
|
bn_channels=bn_size * growth_rate, |
|
kernel_size=kernel_size, |
|
dilation=dilation, |
|
config_str=config_str, |
|
) |
|
self.xvector.add_module("block%d" % (i + 1), block) |
|
channels = channels + num_layers * growth_rate |
|
self.xvector.add_module( |
|
"transit%d" % (i + 1), |
|
TransitLayer( |
|
channels, channels // 2, bias=False, config_str=config_str |
|
), |
|
) |
|
channels //= 2 |
|
|
|
self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels)) |
|
|
|
self.pool = getattr(pooling_layers, pooling_func)(in_dim=channels) |
|
self.pool_out_dim = self.pool.get_out_dim() |
|
self.xvector.add_module("stats", self.pool) |
|
self.xvector.add_module( |
|
"dense", DenseLayer(self.pool_out_dim, embed_dim, config_str="batchnorm_") |
|
) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, (nn.Conv1d, nn.Linear)): |
|
nn.init.kaiming_normal_(m.weight.data) |
|
if m.bias is not None: |
|
nn.init.zeros_(m.bias) |
|
|
|
def forward(self, x): |
|
x = self.feature_extractor(x) |
|
|
|
x = self.head(x) |
|
x = self.xvector(x) |
|
|
|
return x |
|
|