DINO-HuVITS / src /campplus.py
SazerLife's picture
feat: added model
36a67ca
raw
history blame
12.8 kB
# Copyright (c) 2023 Hongji Wang (jijijiang77@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This implementation is adapted from github repo:
https://github.com/alibaba-damo-academy/3D-Speaker
Some modifications:
1. Reuse the pooling layers in wespeaker
2. Remove the memory_efficient mechanism to meet the torch.jit.script
export requirements
Reference:
[1] Hui Wang, Siqi Zheng, Yafeng Chen, Luyao Cheng and Qian Chen.
"CAM++: A Fast and Efficient Network for Speaker Verification
Using Context-Aware Masking". arXiv preprint arXiv:2303.00332
"""
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from .wespeaker_campplus import pooling_layers
from .wespeaker_campplus.fbank_feature_extractor import FbankFeatureExtractor
def get_nonlinear(config_str, channels):
nonlinear = nn.Sequential()
for name in config_str.split("-"):
if name == "relu":
nonlinear.add_module("relu", nn.ReLU(inplace=True))
elif name == "prelu":
nonlinear.add_module("prelu", nn.PReLU(channels))
elif name == "batchnorm":
nonlinear.add_module("batchnorm", nn.BatchNorm1d(channels))
elif name == "batchnorm_":
nonlinear.add_module("batchnorm", nn.BatchNorm1d(channels, affine=False))
else:
raise ValueError("Unexpected module ({}).".format(name))
return nonlinear
class TDNNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=False,
config_str="batchnorm-relu",
):
super(TDNNLayer, self).__init__()
if padding < 0:
assert (
kernel_size % 2 == 1
), "Expect equal paddings, \
but got even kernel size ({})".format(
kernel_size
)
padding = (kernel_size - 1) // 2 * dilation
self.linear = nn.Conv1d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
x = self.linear(x)
x = self.nonlinear(x)
return x
class CAMLayer(nn.Module):
def __init__(
self,
bn_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
bias,
reduction=2,
):
super(CAMLayer, self).__init__()
self.linear_local = nn.Conv1d(
bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
self.relu = nn.ReLU(inplace=True)
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.linear_local(x)
context = x.mean(-1, keepdim=True) + self.seg_pooling(x)
context = self.relu(self.linear1(context))
m = self.sigmoid(self.linear2(context))
return y * m
def seg_pooling(self, x, seg_len: int = 100, stype: str = "avg"):
if stype == "avg":
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
elif stype == "max":
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
else:
raise ValueError("Wrong segment pooling type.")
shape = seg.shape
seg = (
seg.unsqueeze(-1)
.expand(shape[0], shape[1], shape[2], seg_len)
.reshape(shape[0], shape[1], -1)
)
seg = seg[..., : x.shape[-1]]
return seg
class CAMDenseTDNNLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str="batchnorm-relu",
):
super(CAMDenseTDNNLayer, self).__init__()
assert (
kernel_size % 2 == 1
), "Expect equal paddings, \
but got even kernel size ({})".format(
kernel_size
)
padding = (kernel_size - 1) // 2 * dilation
self.nonlinear1 = get_nonlinear(config_str, in_channels)
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
self.cam_layer = CAMLayer(
bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
def bn_function(self, x):
return self.linear1(self.nonlinear1(x))
def forward(self, x):
x = self.bn_function(x)
x = self.cam_layer(self.nonlinear2(x))
return x
class CAMDenseTDNNBlock(nn.ModuleList):
def __init__(
self,
num_layers,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str="batchnorm-relu",
):
super(CAMDenseTDNNBlock, self).__init__()
for i in range(num_layers):
layer = CAMDenseTDNNLayer(
in_channels=in_channels + i * out_channels,
out_channels=out_channels,
bn_channels=bn_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
bias=bias,
config_str=config_str,
)
self.add_module("tdnnd%d" % (i + 1), layer)
def forward(self, x):
for layer in self:
x = torch.cat([x, layer(x)], dim=1)
return x
class TransitLayer(nn.Module):
def __init__(
self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"
):
super(TransitLayer, self).__init__()
self.nonlinear = get_nonlinear(config_str, in_channels)
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
def forward(self, x):
x = self.nonlinear(x)
x = self.linear(x)
return x
class DenseLayer(nn.Module):
def __init__(
self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"
):
super(DenseLayer, self).__init__()
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
if len(x.shape) == 2:
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
else:
x = self.linear(x)
x = self.nonlinear(x)
return x
"""Note: The stride used here is different from that in Resnet
"""
class BasicResBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicResBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_planes,
self.expansion * planes,
kernel_size=1,
stride=(stride, 1),
bias=False,
),
nn.BatchNorm2d(self.expansion * planes),
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class FCM(nn.Module):
def __init__(self, block, num_blocks, m_channels=32, feat_dim=80):
super(FCM, self).__init__()
self.in_planes = m_channels
self.conv1 = nn.Conv2d(
1, m_channels, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn1 = nn.BatchNorm2d(m_channels)
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2)
self.conv2 = nn.Conv2d(
m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(m_channels)
self.out_channels = m_channels * (feat_dim // 8)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = x.unsqueeze(1)
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = F.relu(self.bn2(self.conv2(out)))
shape = out.shape
out = out.reshape(shape[0], shape[1] * shape[2], shape[3])
return out
class CAMPPlus(nn.Module):
def __init__(
self,
feat_dim=80,
embed_dim=512,
pooling_func="TSTP",
growth_rate=32,
bn_size=4,
init_channels=128,
config_str="batchnorm-relu",
):
super(CAMPPlus, self).__init__()
self.feature_extractor = FbankFeatureExtractor(feat_dim=80)
self.head = FCM(block=BasicResBlock, num_blocks=[2, 2], feat_dim=feat_dim)
channels = self.head.out_channels
self.xvector = nn.Sequential(
OrderedDict(
[
(
"tdnn",
TDNNLayer(
channels,
init_channels,
5,
stride=2,
dilation=1,
padding=-1,
config_str=config_str,
),
),
]
)
)
channels = init_channels
for i, (num_layers, kernel_size, dilation) in enumerate(
zip((12, 24, 16), (3, 3, 3), (1, 2, 2))
):
block = CAMDenseTDNNBlock(
num_layers=num_layers,
in_channels=channels,
out_channels=growth_rate,
bn_channels=bn_size * growth_rate,
kernel_size=kernel_size,
dilation=dilation,
config_str=config_str,
)
self.xvector.add_module("block%d" % (i + 1), block)
channels = channels + num_layers * growth_rate
self.xvector.add_module(
"transit%d" % (i + 1),
TransitLayer(
channels, channels // 2, bias=False, config_str=config_str
),
)
channels //= 2
self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels))
self.pool = getattr(pooling_layers, pooling_func)(in_dim=channels)
self.pool_out_dim = self.pool.get_out_dim()
self.xvector.add_module("stats", self.pool)
self.xvector.add_module(
"dense", DenseLayer(self.pool_out_dim, embed_dim, config_str="batchnorm_")
)
for m in self.modules():
if isinstance(m, (nn.Conv1d, nn.Linear)):
nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.feature_extractor(x)
# x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T)
x = self.head(x)
x = self.xvector(x)
return x