|
import torch |
|
import torch.nn as nn |
|
|
|
from .inference_hubert import InferenceHubertBase |
|
from .vae_memory_bank import VAEMemoryBank |
|
|
|
|
|
def create_padding_mask(waveforms_lengths: torch.Tensor = None): |
|
if waveforms_lengths is None: |
|
return None |
|
batch = waveforms_lengths.shape[0] |
|
max_len = waveforms_lengths.max() |
|
device = waveforms_lengths.device |
|
padding_mask = torch.ones(batch, max_len, dtype=torch.bool, device=device) |
|
for idx, length in enumerate(waveforms_lengths): |
|
padding_mask[idx, :length] = 0 |
|
return padding_mask |
|
|
|
|
|
def unfreeze_layers(model: nn.Module, root_name: str): |
|
for name, param in model.named_parameters(): |
|
if root_name in name[: len(root_name)]: |
|
param.requires_grad = True |
|
|
|
|
|
class PosteriorHubert(nn.Module): |
|
def __init__( |
|
self, out_channels, feature_channels, downsample_channels, output_layer=11 |
|
) -> None: |
|
super().__init__() |
|
self.out_channels = out_channels |
|
self.feature_channels = feature_channels |
|
self.downsample_channels = downsample_channels |
|
self.output_layer = output_layer |
|
|
|
self.hubert = InferenceHubertBase() |
|
self.memory_bank = VAEMemoryBank( |
|
n_hidden_dims=feature_channels, |
|
bank_size=1000, |
|
output_channels=downsample_channels, |
|
) |
|
|
|
self.proj = nn.Conv1d(downsample_channels, out_channels * 2, 1) |
|
|
|
def forward(self, waveforms: torch.Tensor, waveforms_lengths: torch.Tensor, g=None): |
|
features, features_mask = self.hubert.extract_features( |
|
source=waveforms, |
|
padding_mask=create_padding_mask(waveforms_lengths), |
|
output_layer=self.output_layer, |
|
) |
|
x = self.memory_bank(features.transpose(1, 2)) |
|
x_mask = (~features_mask).unsqueeze(1).to(torch.float32) |
|
x = x[:, :, : x_mask.shape[-1]] |
|
|
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|