Acoustic and language models
Browse files
README.md
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Acoustic and language models**
|
2 |
+
|
3 |
+
Acoustic model built using [QuartzNet15x5](https://arxiv.org/pdf/1910.10261.pdf) architecture and trained using [NeMo toolkit](https://github.com/NVIDIA/NeMo/tree/r1.0.0b4)
|
4 |
+
|
5 |
+
|
6 |
+
Three n-gram language models created using [KenLM Language Model Toolkit](https://kheafield.com/code/kenlm)
|
7 |
+
|
8 |
+
* LM built on [Common Crawl](https://commoncrawl.org) Russian dataset
|
9 |
+
* LM built on Golos train set
|
10 |
+
* LM built on [Common Crawl](https://commoncrawl.org) and Golos datasets together (50/50)
|
11 |
+
|
12 |
+
| Archives | Size | Links |
|
13 |
+
|--------------------------|------------|-----------------|
|
14 |
+
| QuartzNet15x5_golos.nemo | 68 MB | https://sc.link/ZMv |
|
15 |
+
| KenLMs.tar | 4.8 GB | https://sc.link/YL0 |
|
16 |
+
|
17 |
+
|
18 |
+
Golos data and models are also available in the hub of pre-trained models, datasets, and containers - DataHub ML Space. You can train the model and deploy it on the high-performance SberCloud infrastructure in [ML Space](https://sbercloud.ru/ru/aicloud/mlspace) - full-cycle machine learning development platform for DS-teams collaboration based on the Christofari Supercomputer.
|
19 |
+
|
20 |
+
|
21 |
+
## **Evaluation**
|
22 |
+
|
23 |
+
Percents of Word Error Rate for different test sets
|
24 |
+
|
25 |
+
|
26 |
+
| Decoder \ Test set | Crowd test | Farfield test | MCV<sup>1</sup> dev | MCV<sup>1</sup> test |
|
27 |
+
|-------------------------------------|-----------|----------|-----------|----------|
|
28 |
+
| Greedy decoder | 4.389 % | 14.949 % | 9.314 % | 11.278 % |
|
29 |
+
| Beam Search with Common Crawl LM | 4.709 % | 12.503 % | 6.341 % | 7.976 % |
|
30 |
+
| Beam Search with Golos train set LM | 3.548 % | 12.384 % | - | - |
|
31 |
+
| Beam Search with Common Crawl and Golos LM | 3.318 % | 11.488 % | 6.4 % | 8.06 % |
|
32 |
+
|
33 |
+
|
34 |
+
<sup>1</sup> [Common Voice](https://commonvoice.mozilla.org) - Mozilla's initiative to help teach machines how real people speak.
|
35 |
+
|
36 |
+
## **Resources**
|
37 |
+
|
38 |
+
[[arxiv.org] Golos: Russian Dataset for Speech Research](https://arxiv.org/abs/2106.10161)
|
39 |
+
|
40 |
+
[[habr.com] Golos — самый большой русскоязычный речевой датасет, размеченный вручную, теперь в открытом доступе](https://habr.com/ru/company/sberdevices/blog/559496/)
|
41 |
+
|
42 |
+
[[habr.com] Как улучшить распознавание русской речи до 3% WER с помощью открытых данных](https://habr.com/ru/company/sberdevices/blog/569082/)
|