ZifanScale commited on
Commit
1f29845
1 Parent(s): 8476e2e

Update the README

Browse files
Files changed (2) hide show
  1. README.md +81 -0
  2. rmu_result.png +0 -0
README.md CHANGED
@@ -1,3 +1,84 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ task_categories:
4
+ - text-generation
5
+ language:
6
+ - en
7
+ tags:
8
+ - adversarial robustness
9
+ - human red teaming
10
  ---
11
+
12
+ <style>
13
+ button {
14
+ /* margin: calc(20vw / 100); */
15
+ margin: 0.5em;
16
+ padding-left: calc(40vw / 100);
17
+ padding-right: calc(40vw / 100);
18
+ padding-bottom: calc(0vw / 100);
19
+ text-align: center;
20
+ font-size: 12px;
21
+ height: 25px;
22
+ transition: 0.5s;
23
+ background-size: 200% auto;
24
+ color: white;
25
+ border-radius: calc(60vw / 100);
26
+ display: inline;
27
+ /* border: 2px solid black; */
28
+ font-weight: 500;
29
+ box-shadow: 0px 0px 14px -7px #f09819;
30
+ background-image: linear-gradient(45deg, #64F 0%, #000000 51%, #FF512F 100%);
31
+ cursor: pointer;
32
+ user-select: none;
33
+ -webkit-user-select: none;
34
+ touch-action: manipulation;
35
+ }
36
+ button:hover {
37
+ background-position: right center;
38
+ color: #fff;
39
+ text-decoration: none;
40
+ }
41
+ button:active {
42
+ transform: scale(0.95);
43
+ }
44
+ </style>
45
+
46
+ # Model Card for Llama3-8B-RMU
47
+
48
+ <a href="https://scale.com/research/mhj" style="text-decoration:none">
49
+ <button>Homepage</button>
50
+ </a>
51
+ <a href="https://huggingface.co/datasets/ScaleAI/mhj" style="text-decoration:none">
52
+ <button>Dataset</button>
53
+ </a>
54
+
55
+ This card contains the RMU model `Llama3-8B-RMU` used in *LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks*.
56
+
57
+ ## Paper Abstract
58
+
59
+ Recent large language model (LLM) defenses have greatly improved models’ ability to refuse harmful
60
+ queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against
61
+ automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-
62
+ world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities,
63
+ exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs
64
+ with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning
65
+ defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile
66
+ these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn
67
+ jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens
68
+ of commercial red teaming engagements, supporting research towards stronger LLM defenses.
69
+
70
+ ## RMU (Representation Misdirection for Unlearning) Model
71
+
72
+ For the [WMDP-Bio](https://www.wmdp.ai/) evaluation, we employ the RMU unlearning method. The original
73
+ paper applies [RMU](https://arxiv.org/abs/2403.03218) upon the zephyr-7b-beta model, but to standardize defenses and use a more
74
+ performant model, we apply RMU upon llama-3-8b-instruct, the same base model as all other defenses
75
+ in this paper. We conduct a hyperparameter search upon batches ∈ {200, 400}, c ∈ {5, 20, 50, 200},
76
+ α ∈ {200, 500, 2000, 5000}, lr ∈ {2 × 10−5, 5 × 10−5, 2 × 10−4}. We end up selecting batches = 400,
77
+ c = 50, α = 5000, lr = 2 × 10−4, and retain the hyperparameters layer_ids = [5, 6, 7] and param_ids
78
+ = [6] from [Li et al.]((https://arxiv.org/abs/2403.03218)) We validate our results in Figure 8, demonstrating reduction in WMDP
79
+ performance but retention of general capabilities (MMLU)
80
+
81
+ The following picture shows LLaMA-3-8B-instruct multiple choice benchmark accuracies before and after RMU.
82
+
83
+ ![](rmu_result.png)
84
+
rmu_result.png ADDED