{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79aa7a8752d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79aa7a875360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79aa7a8753f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79aa7a875480>", "_build": "<function ActorCriticPolicy._build at 0x79aa7a875510>", "forward": "<function ActorCriticPolicy.forward at 0x79aa7a8755a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79aa7a875630>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79aa7a8756c0>", "_predict": "<function ActorCriticPolicy._predict at 0x79aa7a875750>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79aa7a8757e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79aa7a875870>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79aa7a875900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79aa7a8783c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693816817055247811, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrcuDy4tvi522zCusqoG7Y6+Yk7GvbmOQAAgD8AAIA/ZvYMvfacXbpYflU5Eav7MyOQTrm+ZXG4AACAPwAAgD8acie9XAMtuk0X7bjhR3O2t8lTulMe3DUAAIA/AACAP0A/xj355/s+7m8HvnSzjL5hDum82TCjvAAAAAAAAAAAgAJSPYVT67lqGTu525C3ON+LS7ugujI4AACAPwAAgD+a9JC8OKm7Pay4E70xNje+hoLcvIOO+bsAAAAAAAAAAHO94r1xboQ/VpjevQlvlr6tmPa9NaZ+vAAAAAAAAAAAjYCSvSmgKLrruhY7hZFnuVvaQDsIuCe6AACAPwAAgD8m+b69zu+JP288o73BleC+CpQAvrojZzsAAAAAAAAAADMelj1ZukM/2uFFvUIhrr7qAJ27dPUgOgAAAAAAAAAAAFasPLbnsT+ehMc9t6eYvkYymD20i7Y9AAAAAAAAAADGWxu++X17Po2YhD0d1Em+o8/hvYn3NT0AAAAAAAAAAJpBdTz2EGW6xU88uSKF2TNi+4K7JZpXOAAAgD8AAIA/GkFdva6BgLrySWo8CxsgPBvtW7szO2M8AACAPwAAgD/muKy9HqiOP2qVx72WSLy+l7LXvfNUkT0AAAAAAAAAAI34nj1eWYc/2F/9PBeJy755P9Y9KoeAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC2RdUsFt+MAWyUTSQBjAF0lEdAljlb5RCQcXV9lChoBkdAcoNWP91loWgHTQsBaAhHQJY5syad+Xt1fZQoaAZHQHDLW74BV+9oB00JAWgIR0CWOfAYHgP3dX2UKGgGR0Bx0U2uPmxMaAdNSAFoCEdAljodgrpaBHV9lChoBkdAcX+sfq5byGgHTWQBaAhHQJY6mlGgBcR1fZQoaAZHQGzBJDVpblloB00YAWgIR0CWOvDdxhlUdX2UKGgGR0By+YkZ75VPaAdNIAFoCEdAljsklAu7H3V9lChoBkdAcYGqQzUI9mgHTQcBaAhHQJY72P7vXsh1fZQoaAZHQGzgAt4A0bdoB00hAWgIR0CWPJWiUPhAdX2UKGgGR0BwidWFN+LFaAdNJwFoCEdAlj37WI42j3V9lChoBkdAcdWuCwr1/WgHTTgBaAhHQJY//IGQjlh1fZQoaAZHQG5iK1XvH95oB00zAWgIR0CWQcyzXz19dX2UKGgGR0BwYKiqQzUJaAdNXgFoCEdAlkLpgogFHXV9lChoBkdAcdGbkwN9Y2gHTV0BaAhHQJZEYRlHz6J1fZQoaAZHQG3g+7+T/yZoB00pAWgIR0CWRPYwqRU4dX2UKGgGR0ByKtSEUTL4aAdNIQFoCEdAlkUSnLq2SnV9lChoBkdAbsm/sVtXP2gHTTMBaAhHQJZFISVW0Z51fZQoaAZHQHDO3+hoM8ZoB00RAWgIR0CWRcxASnLrdX2UKGgGR0BxsAG4ZuQ7aAdNSwFoCEdAlkdu717IDHV9lChoBkdAb7M2Xsw+MmgHTSUBaAhHQJZHsDJU5uJ1fZQoaAZHQHFHvyXlbNdoB01JAWgIR0CWSQso2GZedX2UKGgGR0ByHc0YTCcgaAdNEgFoCEdAlklBouf29XV9lChoBkdAbsoE9t/FzmgHTQEBaAhHQJZKXVd5Y5l1fZQoaAZHQG5hP2wmmchoB01SAWgIR0CWSuh5gPVedX2UKGgGR0BxMPMEA5q/aAdNHgFoCEdAlk2g9aEBbXV9lChoBkdAchgYAsCkoGgHS/poCEdAlk2zz7MxGnV9lChoBkdAcUKQJ5VwP2gHS/toCEdAlk7AOnVG1HV9lChoBkdAcUdu/UONHmgHTQsBaAhHQJZQw9ZA6dV1fZQoaAZHQHGZ15jYqXpoB00BAWgIR0CWUMV7hNucdX2UKGgGR0Bx3knE2pAEaAdNGAFoCEdAllH+kxh2GXV9lChoBkdAcpvmtQsPKGgHTSgBaAhHQJZSeCcwxnF1fZQoaAZHQHCY/DHfdh1oB01sAmgIR0CWVAZRKpT/dX2UKGgGR0BufeZNO/L1aAdNKgFoCEdAllQgyEcsDnV9lChoBkdAcgSNR3u/lGgHTZsBaAhHQJZW6bayrxR1fZQoaAZHQHJdxyXD3uhoB00zAWgIR0CWVxpRGc4HdX2UKGgGR0BwJPLJSzgNaAdNXgFoCEdAllcoDDCP63V9lChoBkdAZcF0PpY9xWgHTegDaAhHQJZXmuJUHY91fZQoaAZHQHLXSBoVVPxoB01qAWgIR0CWV7V/tpmFdX2UKGgGR0Bsvj26ClJpaAdNEwFoCEdAllgf4mCyyHV9lChoBkdAb9sOjIq9XmgHTRoBaAhHQJZYYGB4D9x1fZQoaAZHQHCDc7ZFoctoB01sAWgIR0CWWI8EFGG3dX2UKGgGR0BtnRRGc4HYaAdNCgFoCEdAlliWk8A7xXV9lChoBkdAcst4UN8VpWgHS/loCEdAlllBdY4hlnV9lChoBkdAb6hWFN+LFWgHTcMBaAhHQJZZSJk5IYp1fZQoaAZHQHIYt4/u9e1oB00TAWgIR0CWWoLpA2Q5dX2UKGgGR0Bx6FUjs2NvaAdNMQFoCEdAllqdJ4B3inV9lChoBkdAcf6Po3aSLmgHTUMBaAhHQJZ1xM10knl1fZQoaAZHQHHFw44p+c9oB02tAWgIR0CWd0wAlv61dX2UKGgGR0Bt/KrHU+cIaAdNxwFoCEdAlnkBje9BbHV9lChoBkdAb7j1KXfIjmgHTS0CaAhHQJZ59L6DXe51fZQoaAZHQHHx7A57w8ZoB002AmgIR0CWgXfdhy80dX2UKGgGR0BxWq8QI2OyaAdNQgJoCEdAloJ2Cdz4lHV9lChoBkdAcWj8YyfthWgHTYMCaAhHQJaITiWE9Md1fZQoaAZHQGttiH6/IsBoB02AA2gIR0CWjgBbOeJ6dX2UKGgGR0BwjAFhXr+paAdNsQJoCEdAlpEkEgW8AnV9lChoBkdAbDdu5SWJJ2gHTTUDaAhHQJaS6vxH5Jt1fZQoaAZHQHDSK68QI2RoB01nA2gIR0CWlAvt+kP+dX2UKGgGR0BuUCMHbAUMaAdNWwNoCEdAlpWqDkELY3V9lChoBkdAWxmvaDf3vmgHTegDaAhHQJaWKCGvfTF1fZQoaAZHQG9stGmUGFBoB01EAWgIR0CWlnqGUOd5dX2UKGgGR0BtQgPXkHUuaAdNsgNoCEdAlptUd/8VHnV9lChoBkdAZOn6JIlMRGgHTegDaAhHQJacrAxi5NJ1fZQoaAZHQG38aKcd5ptoB00JAWgIR0CWnojz7MxHdX2UKGgGR0Bo8A5eZ5RkaAdN2ANoCEdAlp/aRU3n6nV9lChoBkdAbc0BnSOR1WgHTdgCaAhHQJagsNlRP451fZQoaAZHQG8BKmj0tiBoB02iAmgIR0CWocMEidJ8dX2UKGgGR0BxqhZIQOFyaAdNIAFoCEdAlrSsrI5o5HV9lChoBkdAcVWOjqOcUmgHTXoCaAhHQJa1BZjhDPZ1fZQoaAZHQG6yw0oBq9JoB00/AmgIR0CWtzpI+W4WdX2UKGgGR0Bxqt7eEZivaAdN/QFoCEdAlrgJ+lTFVHV9lChoBkdAbI/2/zreImgHTUIBaAhHQJa8naWX1J11fZQoaAZHQHBHGuxKQJZoB03SAWgIR0CWvn/QSi/PdX2UKGgGR0Bwlvtx+8XfaAdNPAFoCEdAlsBqMJhOQHV9lChoBkdAcMH/o7muDGgHTRACaAhHQJbAfhuO0b91fZQoaAZHQGP7Wa2F36hoB03oA2gIR0CWweqDbrTqdX2UKGgGR0BfMuZ5Rjz7aAdN6ANoCEdAlsO5BomG/XV9lChoBkdAcylEOiFj/mgHTVYBaAhHQJbEYBnzxw11fZQoaAZHQHCz/Mr3CbdoB00kAWgIR0CWxiinHeabdX2UKGgGR0BwghhWo3rEaAdNDwFoCEdAlse3pB5X2nV9lChoBkdAcva01ZTya2gHTbwBaAhHQJbLMicG1QZ1fZQoaAZHQG/ue+Eh7mdoB03qAWgIR0CWy3y8zyjIdX2UKGgGR0BwfaSZBsyjaAdNtwJoCEdAlsvcI/qxDHV9lChoBkdAbvJ/GVAzHmgHTUUCaAhHQJbMfTLGJep1fZQoaAZHQG+s46Oo5xRoB00oA2gIR0CWzapAD7qIdX2UKGgGR0BxMtnQID5kaAdNGwFoCEdAls6A7kn1F3V9lChoBkdAa4XAgPmPo2gHTVUBaAhHQJbPf6ab4Jx1fZQoaAZHQHHCunAIpphoB03wAWgIR0CW0YwJw84hdX2UKGgGR0BxMukLx7RfaAdNdgFoCEdAltHQDvE0i3V9lChoBkdAcgh850bLlmgHTVEBaAhHQJbUS43FUAF1fZQoaAZHQHBGKo60Y0loB010AWgIR0CW1GCj1wo9dX2UKGgGR0BxsD30wrUcaAdNhQJoCEdAltUsqrilznV9lChoBkdAcPpIiTt9hWgHTRYBaAhHQJba8Q2/BWR1fZQoaAZHQHHNkFnqVyFoB00WAWgIR0CW3cAJLM9sdX2UKGgGR0ByCWIbfgrIaAdNmQFoCEdAluBSYLLIP3V9lChoBkdAbV1ifg75mGgHTSABaAhHQJbiFu+AVfx1fZQoaAZHQHHH2R/3FkxoB00dAmgIR0CW4uJeE7GOdX2UKGgGR0Btx5W912aEaAdNwgJoCEdAluPiOFQEZHV9lChoBkdAbqirCm/Fi2gHTRoCaAhHQJbkEImgJ1J1fZQoaAZHQG9IGoR7JGRoB01HAWgIR0CW5BwZflZHdX2UKGgGR0BvorTpgTh6aAdN/gJoCEdAluUFg6U7jnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |