--- license: llama3.2 base_model: - meta-llama/Llama-3.2-11B-Vision-Instruct pipeline_tag: image-text-to-text library_name: transformers --- Converted from [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) using BitsAndBytes with NF4 (4-bit) quantization. Not using double quantization. Requires `bitsandbytes` to load. Example usage for image captioning: ```python from transformers import MllamaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig from PIL import Image import time # Load model model_id = "SeanScripts/Llama-3.2-11B-Vision-Instruct-nf4" model = MllamaForConditionalGeneration.from_pretrained( model_id, use_safetensors=True, device_map="cuda:0" ) # Load tokenizer processor = AutoProcessor.from_pretrained(model_id) # Caption a local image (could use a more specific prompt) IMAGE = Image.open("test.png").convert("RGB") PROMPT = """<|begin_of_text|><|start_header_id|>user<|end_header_id|> Caption this image: <|image|><|eot_id|><|start_header_id|>assistant<|end_header_id|> """ inputs = processor(IMAGE, PROMPT, return_tensors="pt").to(model.device) prompt_tokens = len(inputs['input_ids'][0]) print(f"Prompt tokens: {prompt_tokens}") t0 = time.time() generate_ids = model.generate(**inputs, max_new_tokens=256) t1 = time.time() total_time = t1 - t0 generated_tokens = len(generate_ids[0]) - prompt_tokens time_per_token = generated_tokens/total_time print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)") output = processor.decode(generate_ids[0][prompt_tokens:]).replace('<|eot_id|>', '') print(output) ```