SecondTheFirst
commited on
Commit
·
3d87750
1
Parent(s):
85b35c6
My First Deep RL model
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-2.zip +3 -0
- ppo-LunarLander-v2-2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-2/data +99 -0
- ppo-LunarLander-v2-2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-2/policy.pth +3 -0
- ppo-LunarLander-v2-2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 282.58 +/- 19.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e67acdd5cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67acdd5d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67acdd5e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67acdd5ea0>", "_build": "<function ActorCriticPolicy._build at 0x7e67acdd5f30>", "forward": "<function ActorCriticPolicy.forward at 0x7e67acdd5fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67acdd6050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67acdd60e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e67acdd6170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67acdd6200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67acdd6290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67acdd6320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e67acf7d240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702899981925274417, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE13Pr0fbZm5XTHdOoB1oDVmxtS6KcEAugAAgD8AAIA/mn+6vVz7drpaR9a7+ooNOEkU1joNElK3AACAPwAAgD9mOxC9UZQxPn5lODw0w3y+nWtgPAqeFb0AAAAAAAAAAM3M9TzD2SW67l/MOgMMMzaVZUc74IDtuQAAgD8AAIA/TVWWvXGNH7m0pzE766evN0BPTztggAS6AACAPwAAgD8ACg69w9E8ugZ5GzhvZ30y72upu3TKNrcAAIA/AACAP2ZwiL2kxyi7wi82vBUxlDykHXw8Otx+vQAAgD8AAIA/mlzjPHvSgrrNdhe8M17NtYHayrlq/T01AACAPwAAgD8ASeE846yPP7SVxj2dReq+MEsOOdTimL0AAAAAAAAAABpFEL7DvVg7evXHOMzbgrZ0kgC9opH1twAAgD8AAIA/zYHKPMOxGrpmrjy6rEebtuQDzLpTzVg5AACAPwAAgD9aeoq9w5V4uktWbbvp7fA2JJUIu2bvWbYAAIA/AACAPxo17D3hyJS6mpA7u21hATYordW62+BZOgAAgD8AAIA/2ijPvTiqsrtFVNC9C7twvjKTu7zbw5s+AACAPwAAAADNDE86w7lmukdHk7tykUE4LI9Ou5InBDgAAIA/AACAP5pwLD1n+hc+6EwMvn1HkL4yxFM8thyrOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSKvJA+pwWMAWyUTegDjAF0lEdAl/8DZtelbnV9lChoBkdAZ9qE3bVSXWgHTegDaAhHQJgAbiCJ40N1fZQoaAZHQGOn2xhUipxoB03oA2gIR0CYAdvllsgudX2UKGgGR0BSDeqNp/PPaAdL+mgIR0CYBKoQ4CIUdX2UKGgGR0BAHtjkMkQgaAdLzWgIR0CYCqPci4axdX2UKGgGR0BmKyzE74i5aAdN6ANoCEdAmAsdD6WPcXV9lChoBkdAB352Qnx8UmgHS9JoCEdAmAxWzKLbYnV9lChoBkdAYut1r6+FlGgHTegDaAhHQJgSNzFMqSZ1fZQoaAZHQGSxrupjtoloB03oA2gIR0CYE2KjBVMmdX2UKGgGR0BQKhddE9dNaAdLt2gIR0CYFdaWX1J2dX2UKGgGR0BlAZrHlwLmaAdN6ANoCEdAmBcW8mKIi3V9lChoBkdAZdaKEWZZ0WgHTegDaAhHQJgaYUh3aBZ1fZQoaAZHQGGuFefI0ZZoB03oA2gIR0CYG5oXsPatdX2UKGgGR0BLTyk0rK/3aAdL5WgIR0CYIjugHu7ZdX2UKGgGR0BnJ+VPepGXaAdN6ANoCEdAmCJi+g13uHV9lChoBkdAYadKraM72mgHTegDaAhHQJgiwRQJokB1fZQoaAZHQGJbSv1UVBVoB03oA2gIR0CYJVGPgeijdX2UKGgGR0BQRIDTz/ZNaAdL0WgIR0CYLkbGm1pkdX2UKGgGR0BK6k/bCaZyaAdL3mgIR0CYMtA3DNyHdX2UKGgGR0BnHuJBPbfxaAdN6ANoCEdAmDLeDnNgSnV9lChoBkdAYYVHd43WF2gHTegDaAhHQJg05TisGPh1fZQoaAZHQGLR6MJhOQBoB03oA2gIR0CYS35Jsfq5dX2UKGgGR0BoArVx0dR0aAdN6ANoCEdAmFLBBAv+O3V9lChoBkdAYmuHTI/7i2gHTegDaAhHQJhXG6ErXlN1fZQoaAZHQD7VVKf4AS5oB0vaaAhHQJhXHkGRmsh1fZQoaAZHQG8i8lHBk7RoB019AmgIR0CYXeCzC1qndX2UKGgGR0Bi2rpTuOS4aAdN6ANoCEdAmF6JqmCROnV9lChoBkdAYgNZHuqm0mgHTegDaAhHQJhfvdLxqfx1fZQoaAZHQFL76nBLwnZoB0uzaAhHQJhiOPkq+al1fZQoaAZHQEkAIAwPAfxoB0vVaAhHQJhkCxZ+x4Z1fZQoaAZHQGG3MkIHC41oB03oA2gIR0CYZjjfNzKcdX2UKGgGR0BjsjE74i5eaAdN6ANoCEdAmGgqZx7zCnV9lChoBkdAZpFtuUD+zmgHTegDaAhHQJhpBCWu5jJ1fZQoaAZHQFJR2Q4jrzJoB0vSaAhHQJhpa1v2oNx1fZQoaAZHQGV6N6ol2NhoB03oA2gIR0CYaz8jiXIEdX2UKGgGR0BlPKHVPN3XaAdN6ANoCEdAmGwgblzU7XV9lChoBkdAL3Tg/C66KGgHS/poCEdAmGzIRdyDI3V9lChoBkdAY9cDtgKF7GgHTegDaAhHQJhwPdbgTAZ1fZQoaAZHQFFA62OQyRBoB0vDaAhHQJh1Icn3L3d1fZQoaAZHQD+4dsBQvYhoB0vAaAhHQJh11llK9PF1fZQoaAZHQGWJH2ZiNKhoB03oA2gIR0CYfArpJPIodX2UKGgGR0BomAgcLjPwaAdN6ANoCEdAmIA5u2qkunV9lChoBkdAYunzq8lHBmgHTegDaAhHQJiASZQYUFl1fZQoaAZHQGR5CpvP1L9oB03oA2gIR0CYmzmk30f6dX2UKGgGR0BksVnEl3QlaAdN6ANoCEdAmKAtSZSeiHV9lChoBkdAbs911W8yvmgHTSUBaAhHQJile2MKkVN1fZQoaAZHQGZx8h1Tzd1oB03oA2gIR0CYqclQuVX4dX2UKGgGR0A6Yc7QswtbaAdLx2gIR0CYrBgg5imVdX2UKGgGR0BmliLjxTbWaAdN6ANoCEdAmK4+/cnE23V9lChoBkdAZkdH/cWTHWgHTegDaAhHQJiwQv6CUX51fZQoaAZHQGT6Cr1dxABoB03oA2gIR0CYsonyNGVidX2UKGgGR0Bky7KzRhMKaAdN6ANoCEdAmLR1/pdKNHV9lChoBkdAMed2Pkq+amgHS71oCEdAmLVOe4Cp33V9lChoBkdAYTQPMB6rvWgHTegDaAhHQJi1cNhE0BR1fZQoaAZHQGfn67mMfihoB03oA2gIR0CYtfh86V+rdX2UKGgGR0Bknp1aGHpKaAdN6ANoCEdAmLhpSiudPXV9lChoBkdAUIvAAQxvemgHS9NoCEdAmL1/hhpg1HV9lChoBkdAZ2Nyn1nM+2gHTegDaAhHQJjAHuZ1FH91fZQoaAZHQBrdihFmWdFoB0vcaAhHQJjA+e2/i5x1fZQoaAZHQHAEQWac7QtoB02+A2gIR0CYxJJPZZjhdX2UKGgGR0BaHzps41gqaAdN6ANoCEdAmMYsohIOH3V9lChoBkdAQt1WjoIOY2gHS9BoCEdAmM0dAcDKYHV9lChoBkdAYWMpjMFEA2gHTegDaAhHQJjNLx5LRKJ1fZQoaAZHQGhNdOymhuhoB03oA2gIR0CY0TA6+36RdX2UKGgGR0BAK3pwCKaYaAdLz2gIR0CY0mNmUW2xdX2UKGgGR0BjFaN6w+t9aAdN6ANoCEdAmNgVPSDyv3V9lChoBkdAOS234Kx9omgHS9JoCEdAmPI4od+5OXV9lChoBkdAYUilD4QBgmgHTegDaAhHQJj3KT4cm0F1fZQoaAZHQGkgg/cFhXtoB03oA2gIR0CY/X1CPZIydX2UKGgGR0BkAIEfT1CgaAdN6ANoCEdAmP88B2fTTnV9lChoBkdAZB7DKoybhGgHTegDaAhHQJkFfJQtSQ51fZQoaAZHQGFTaVD8cdZoB03oA2gIR0CZBk1wHZ9NdX2UKGgGR0Bnarhisny/aAdN6ANoCEdAmQZpV81Gb3V9lChoBkdAYDsvugHu7mgHTegDaAhHQJkG001qFh51fZQoaAZHQGU9UgjhUBJoB03oA2gIR0CZCNck+otMdX2UKGgGR0Bhirp1RtP6aAdN6ANoCEdAmQ0VMdtEX3V9lChoBkdAZsoyWzF+/mgHTegDaAhHQJkPHpB5X2d1fZQoaAZHQGarPW6K+BZoB03oA2gIR0CZEzuGKyfMdX2UKGgGR0BoDKvmozeoaAdN6ANoCEdAmRuSWu5jIHV9lChoBkdAYl/BkZrHl2gHTegDaAhHQJkbpGqgh8p1fZQoaAZHQGI8WBreqJdoB03oA2gIR0CZH+jgQ6IWdX2UKGgGR0BkJqc3EQ5FaAdN6ANoCEdAmSjJ5qubJHV9lChoBkdAYnqE0zj3mGgHTegDaAhHQJlB78baRIV1fZQoaAZHQFfIk2P1ct5oB03oA2gIR0CZRaKmsNlRdX2UKGgGR0BlMwLiMo+faAdN6ANoCEdAmUvNdRiw0XV9lChoBkdAZHUEs8PnS2gHTegDaAhHQJlNjNZ/0/Z1fZQoaAZHQGJ+Xq7iADtoB03oA2gIR0CZU8/lhgE2dX2UKGgGR0BguuaWom5UaAdN6ANoCEdAmVUGWQfZEnV9lChoBkdAXwhkK/mDDmgHTegDaAhHQJlVLMr3Cbd1fZQoaAZHQGST/k/8l5ZoB03oA2gIR0CZVcOZssQNdX2UKGgGR0Bl5s/jbSJCaAdN6ANoCEdAmVh72YfGMnV9lChoBkdAXlmIfr8iwGgHTegDaAhHQJleKvbGm1p1fZQoaAZHQGb06akRBeJoB03oA2gIR0CZYOM+u/1ydX2UKGgGR0AxrCtRvWH2aAdL22gIR0CZY964lQdkdX2UKGgGR0BlpFnVXmvGaAdN6ANoCEdAmWSNoexOcnV9lChoBkdAY5HTQVsUI2gHTegDaAhHQJlstoGpuMx1fZQoaAZHQGb1gSnLq2VoB03oA2gIR0CZbMdCmdiEdX2UKGgGR0BhPdHYpUgkaAdN6ANoCEdAmXC/mgam43V9lChoBkdASyWaKDTScGgHS+VoCEdAmXDCp71Iy3V9lChoBkdAZLUVQhwEQ2gHTegDaAhHQJl3e4RVZLZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e67acdd5cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67acdd5d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67acdd5e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67acdd5ea0>", "_build": "<function ActorCriticPolicy._build at 0x7e67acdd5f30>", "forward": "<function ActorCriticPolicy.forward at 0x7e67acdd5fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67acdd6050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67acdd60e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e67acdd6170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67acdd6200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67acdd6290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67acdd6320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e67acf7d240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702982848890094232, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2Eib0OSvs92KvsPcsItr7tV709EMALPAAAAAAAAAAAAMiRPIVTprkjZPu7BFrDOzDCD7rzwOW7AAAAAAAAAAAA73m9ev6xPss96j02Iqy+mOTTPPlpMD0AAAAAAAAAADoQGr7z1K8+7qggP+P26b6AsYU8WG/QPgAAAAAAAAAAE984vl+Hhz+z6zK/0M0dv2O/B766Dny+AAAAAAAAAABW/8w+nXQWP+b4K77leBK/qSahPtDchr4AAAAAAAAAAMDboz2Pfgq63qlyswyQ965fj4g63qnSMwAAgD8AAIA/ZifHvTjCprtQ6mW8b4CKPJlo7bzD/Ws9AACAPwAAAAAz5dw9Sa2JPybCNT4EFyW/T3rIPablDD0AAAAAAAAAAEBEhr2aABA+rZZVPNKphr6L8RU9+HRQvQAAAAAAAAAAk+ggvlrOPD8qhAg+Hab/vi0B2b1pkys+AAAAAAAAAAAAzFQ8Y9AVPb04EL69vJW+jAlqvAY5gj0AAAAAAAAAAM22sDwFwOa7dp4DvhcuFz0e7TQ9Ul/4vQAAgD8AAIA/5oEVPYWz4rlmKYk3s+94MraxkjstxKS2AACAPwAAAABmEC29SL+yuoBmZjoraVw1XcxcuBiVg7kAAIA/AACAPxr90z24Wde7faxWvdZw4DyGYUm94kK5PQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCPI+wC8vqMAWyUS9uMAXSUR0CHuV1ZDArQdX2UKGgGR0BxVCuB+WnkaAdL3WgIR0CHudb0OEuhdX2UKGgGR0Bw+xnzxwyZaAdLyWgIR0CHutkNnXd1dX2UKGgGR0BwoDjdYW+HaAdL6mgIR0CHuuTh5xBFdX2UKGgGR0BxHs8p1A7gaAdLzWgIR0CHvCJfICEIdX2UKGgGR0Bx2AiTt9hJaAdL/2gIR0CHvEPkq+ajdX2UKGgGR0BvDh8lXzUaaAdL4WgIR0CHvJj1f3N+dX2UKGgGR0BwIrWd3B55aAdLzGgIR0CHvrkDIRywdX2UKGgGR0BwgGevpyIYaAdLyWgIR0CHvu5S3soldX2UKGgGR0BwLYBaLXMAaAdL4mgIR0CHvzmh/RVqdX2UKGgGR0ByyqkzoEB9aAdL6WgIR0CHv0YfnwG4dX2UKGgGR0BzruvhZQpGaAdL1WgIR0CHwO9FnZkDdX2UKGgGR0BwBKTGHYYjaAdL5WgIR0CHwXrdFfAsdX2UKGgGR0BwGsna37UHaAdL42gIR0CHwoBczImxdX2UKGgGR0Bxtv4fwI+oaAdL7GgIR0CHwuGgzxgBdX2UKGgGR0Bw4xX0XgtOaAdL1WgIR0CHwxBTn7pFdX2UKGgGR0Bxrsy9EkSmaAdLzGgIR0CHxDWTX8O1dX2UKGgGR0ByCGz+m3vyaAdL92gIR0CHxSfcvduYdX2UKGgGR0BvIP4fwI+oaAdL62gIR0CHxa2TgVGkdX2UKGgGR0Bvt+ViWmgraAdL3GgIR0CHxlyn1nM/dX2UKGgGR0Buf5lFtsN2aAdL3GgIR0CHxn9F4LThdX2UKGgGR0Bx3jjfek57aAdL5mgIR0CHx0+3Ytg8dX2UKGgGR0By/l1Ng0CSaAdLzmgIR0CHyJUy57PZdX2UKGgGR0Bzvr433pOfaAdL02gIR0CHyR5C4SYgdX2UKGgGR0Bw/IXTEzfraAdL1GgIR0CHyTzT4L1FdX2UKGgGR0ByRQ8yN4qxaAdL82gIR0CHyiNIbwSbdX2UKGgGR0Bz++WHDaXbaAdL1mgIR0CHywzMRpUQdX2UKGgGR0BxHx1zQu27aAdL2mgIR0CHy6rcTJyRdX2UKGgGR0Bvy8zhxYJWaAdL4GgIR0CHzPkupS75dX2UKGgGR0Bx7Q4R28qXaAdL22gIR0CHzSEjgQ6IdX2UKGgGR0BzL/WjGkvcaAdL12gIR0CHzSDWbwz+dX2UKGgGR0BxTgMTewcHaAdLymgIR0CHzafpUxVRdX2UKGgGR0BxMbdoFmnPaAdNJwJoCEdAh/m2L5ylvnV9lChoBkdAcX1XA/LTyGgHS+FoCEdAh/qBZ6lchXV9lChoBkdAc3nuyu6mO2gHS91oCEdAh/r8CYCyQnV9lChoBkdAcUnCiyprDmgHS/loCEdAh/s/2TPjXHV9lChoBkdAcukIjnmq52gHS9doCEdAh/utQbdadXV9lChoBkdAcuzgKneiz2gHS9JoCEdAh/yo55qubXV9lChoBkdAcY8jPOY6XGgHS9xoCEdAh/3G0mdAgXV9lChoBkdAcaRuhK15SmgHS+hoCEdAh/48/MW43HV9lChoBkdAcw1RIBikPGgHS+ZoCEdAh/8oDoyKvXV9lChoBkdAcIESDyvs7mgHS+BoCEdAh//RAjY7JXV9lChoBkdAcOruTibUgGgHS9xoCEdAiABFHavicXV9lChoBkdAcFauJUHY6GgHS8doCEdAiAFJOFg2InV9lChoBkdAcWMRaouPFWgHS9doCEdAiAF4wyqMnHV9lChoBkdAcm/73PAwf2gHS+1oCEdAiAJZylvZRXV9lChoBkdAc0x/cWTHKmgHTQcBaAhHQIgDyHVPN3Z1fZQoaAZHQG39Jn6Eal1oB0vcaAhHQIgEB1s+FDh1fZQoaAZHQHHr/FzdUKloB0vHaAhHQIgESpm29ct1fZQoaAZHQHOZrWVeKKpoB0vCaAhHQIgEsWdmQKd1fZQoaAZHQHHbLFGXokloB0vcaAhHQIgExIxxkup1fZQoaAZHQHJ3YbXHzYpoB0vfaAhHQIgHFfZ26kJ1fZQoaAZHQHFxzkELYwtoB00JAWgIR0CIB38BuGbkdX2UKGgGR0BWqGSt/4IsaAdLpGgIR0CIB/Jmukk9dX2UKGgGR0BveM8vEjxDaAdL32gIR0CICLMJQcghdX2UKGgGR0BwjTSmZVn3aAdL3GgIR0CICYJUHY6GdX2UKGgGR0BzOnBrN4Z/aAdL/2gIR0CICcoNNJvpdX2UKGgGR0BxBZjQRf4RaAdL6GgIR0CICsrhBJI2dX2UKGgGR0BuWWP91loUaAdL0mgIR0CIC3yOq//OdX2UKGgGR0BwR1xo7FKkaAdL/GgIR0CIDZseGO+7dX2UKGgGR0Bv0ohIOH32aAdL52gIR0CIDbWPLgXNdX2UKGgGR0ByyMNy5qdpaAdL1WgIR0CIDkjsUqQSdX2UKGgGR0BwOfZlFtsOaAdL1mgIR0CIDulwcYIjdX2UKGgGR0Bvrf1YhdMTaAdL22gIR0CIDuLZzxPPdX2UKGgGR0Bxf7PWxyGSaAdL0GgIR0CIDxQTEit8dX2UKGgGR0Bx3T0163RYaAdL22gIR0CID6oKlYU4dX2UKGgGR0BxCf8AJb+taAdLzmgIR0CIEcrNnoPkdX2UKGgGR0Bz0v+1jRUnaAdL6GgIR0CIErgVoHs1dX2UKGgGR0BxuthsqJ/HaAdLzGgIR0CIEwOearmydX2UKGgGR0BxDvrPdEb6aAdLymgIR0CIE8xHoX9BdX2UKGgGR0ByDJkwvg3taAdLxGgIR0CIFYwg1WKedX2UKGgGR0Bzjvoq0+khaAdL52gIR0CIFZ9NN8E3dX2UKGgGR0ByOI+1SflIaAdL2WgIR0CIFe89Oh0ydX2UKGgGR0ByKo/UvwmWaAdL1mgIR0CIGL8QZn+RdX2UKGgGR0BxpxzvJA+qaAdL5GgIR0CIGZMjeKsNdX2UKGgGR0ByIHjp9qk/aAdL4GgIR0CIGitsenyedX2UKGgGR0BxNrV9Wp6yaAdL12gIR0CIGpo6jnFHdX2UKGgGR0BvJ2QuEmICaAdL3GgIR0CIGq/Z/Tb4dX2UKGgGR0BxaZwo9cKPaAdL4GgIR0CIGvJaJQ+EdX2UKGgGR0BxFosVclgMaAdL2GgIR0CIG2VRk3CLdX2UKGgGR0Bu9OhRIjGDaAdNkQFoCEdAiB1Qob4rSXV9lChoBkdAcKEoA4n4PGgHS9FoCEdAiB2UQ04zanV9lChoBkdAbtl/8VHnU2gHS+ZoCEdAiB+xOUMXrXV9lChoBkdAcVRayrxRVWgHS/JoCEdAiCCcvEjxC3V9lChoBkdAcc03r2QGOmgHS9RoCEdAiCGeJpFkQXV9lChoBkdAcOtsLv1DjWgHS9JoCEdAiCGU3n6l+HV9lChoBkdAZHnn8Kohp2gHTdsDaAhHQIgiLD63y7R1fZQoaAZHQHIsOOsDGLloB00LAWgIR0CIIpp0OmSAdX2UKGgGR0Bwer+ee4CqaAdNAwFoCEdAiCQgFotcwHV9lChoBkdAcCzyhi9ZimgHS9NoCEdAiCRCvX9R8HV9lChoBkdAczhOinHeamgHS9ZoCEdAiCTrUkOZs3V9lChoBkdAcwlWLP2PDGgHS9VoCEdAiCWWgezUqnV9lChoBkdAby3BSk0rLGgHS8xoCEdAiCXARkEs8XV9lChoBkdAc225e7cwg2gHS+NoCEdAiCYg0TDfnHV9lChoBkdAceDptaY/mmgHS/5oCEdAiCb+pOvdM3V9lChoBkdAcJHuxbB42WgHS/doCEdAiCc1VghKUXV9lChoBkdAcXPKvFFUhmgHS9FoCEdAiCeRn3+MqHV9lChoBkdAcQicu8K5TmgHS9toCEdAiCfMA/9pAXV9lChoBkdAc8jFt8/lhmgHS9NoCEdAiClKGtZFHHV9lChoBkdAcyN3bVSXMWgHS8xoCEdAiCqTV2A5JnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1db71065097865a581e150a83be9f0173a31ed8e139b82ce4ed7c4966158ea8f
|
3 |
+
size 148138
|
ppo-LunarLander-v2-2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e67acdd5cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67acdd5d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67acdd5e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67acdd5ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e67acdd5f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e67acdd5fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67acdd6050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67acdd60e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e67acdd6170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67acdd6200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67acdd6290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67acdd6320>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e67acf7d240>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1702982848890094232,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2Eib0OSvs92KvsPcsItr7tV709EMALPAAAAAAAAAAAAMiRPIVTprkjZPu7BFrDOzDCD7rzwOW7AAAAAAAAAAAA73m9ev6xPss96j02Iqy+mOTTPPlpMD0AAAAAAAAAADoQGr7z1K8+7qggP+P26b6AsYU8WG/QPgAAAAAAAAAAE984vl+Hhz+z6zK/0M0dv2O/B766Dny+AAAAAAAAAABW/8w+nXQWP+b4K77leBK/qSahPtDchr4AAAAAAAAAAMDboz2Pfgq63qlyswyQ965fj4g63qnSMwAAgD8AAIA/ZifHvTjCprtQ6mW8b4CKPJlo7bzD/Ws9AACAPwAAAAAz5dw9Sa2JPybCNT4EFyW/T3rIPablDD0AAAAAAAAAAEBEhr2aABA+rZZVPNKphr6L8RU9+HRQvQAAAAAAAAAAk+ggvlrOPD8qhAg+Hab/vi0B2b1pkys+AAAAAAAAAAAAzFQ8Y9AVPb04EL69vJW+jAlqvAY5gj0AAAAAAAAAAM22sDwFwOa7dp4DvhcuFz0e7TQ9Ul/4vQAAgD8AAIA/5oEVPYWz4rlmKYk3s+94MraxkjstxKS2AACAPwAAAABmEC29SL+yuoBmZjoraVw1XcxcuBiVg7kAAIA/AACAPxr90z24Wde7faxWvdZw4DyGYUm94kK5PQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCPI+wC8vqMAWyUS9uMAXSUR0CHuV1ZDArQdX2UKGgGR0BxVCuB+WnkaAdL3WgIR0CHudb0OEuhdX2UKGgGR0Bw+xnzxwyZaAdLyWgIR0CHutkNnXd1dX2UKGgGR0BwoDjdYW+HaAdL6mgIR0CHuuTh5xBFdX2UKGgGR0BxHs8p1A7gaAdLzWgIR0CHvCJfICEIdX2UKGgGR0Bx2AiTt9hJaAdL/2gIR0CHvEPkq+ajdX2UKGgGR0BvDh8lXzUaaAdL4WgIR0CHvJj1f3N+dX2UKGgGR0BwIrWd3B55aAdLzGgIR0CHvrkDIRywdX2UKGgGR0BwgGevpyIYaAdLyWgIR0CHvu5S3soldX2UKGgGR0BwLYBaLXMAaAdL4mgIR0CHvzmh/RVqdX2UKGgGR0ByyqkzoEB9aAdL6WgIR0CHv0YfnwG4dX2UKGgGR0BzruvhZQpGaAdL1WgIR0CHwO9FnZkDdX2UKGgGR0BwBKTGHYYjaAdL5WgIR0CHwXrdFfAsdX2UKGgGR0BwGsna37UHaAdL42gIR0CHwoBczImxdX2UKGgGR0Bxtv4fwI+oaAdL7GgIR0CHwuGgzxgBdX2UKGgGR0Bw4xX0XgtOaAdL1WgIR0CHwxBTn7pFdX2UKGgGR0Bxrsy9EkSmaAdLzGgIR0CHxDWTX8O1dX2UKGgGR0ByCGz+m3vyaAdL92gIR0CHxSfcvduYdX2UKGgGR0BvIP4fwI+oaAdL62gIR0CHxa2TgVGkdX2UKGgGR0Bvt+ViWmgraAdL3GgIR0CHxlyn1nM/dX2UKGgGR0Buf5lFtsN2aAdL3GgIR0CHxn9F4LThdX2UKGgGR0Bx3jjfek57aAdL5mgIR0CHx0+3Ytg8dX2UKGgGR0By/l1Ng0CSaAdLzmgIR0CHyJUy57PZdX2UKGgGR0Bzvr433pOfaAdL02gIR0CHyR5C4SYgdX2UKGgGR0Bw/IXTEzfraAdL1GgIR0CHyTzT4L1FdX2UKGgGR0ByRQ8yN4qxaAdL82gIR0CHyiNIbwSbdX2UKGgGR0Bz++WHDaXbaAdL1mgIR0CHywzMRpUQdX2UKGgGR0BxHx1zQu27aAdL2mgIR0CHy6rcTJyRdX2UKGgGR0Bvy8zhxYJWaAdL4GgIR0CHzPkupS75dX2UKGgGR0Bx7Q4R28qXaAdL22gIR0CHzSEjgQ6IdX2UKGgGR0BzL/WjGkvcaAdL12gIR0CHzSDWbwz+dX2UKGgGR0BxTgMTewcHaAdLymgIR0CHzafpUxVRdX2UKGgGR0BxMbdoFmnPaAdNJwJoCEdAh/m2L5ylvnV9lChoBkdAcX1XA/LTyGgHS+FoCEdAh/qBZ6lchXV9lChoBkdAc3nuyu6mO2gHS91oCEdAh/r8CYCyQnV9lChoBkdAcUnCiyprDmgHS/loCEdAh/s/2TPjXHV9lChoBkdAcukIjnmq52gHS9doCEdAh/utQbdadXV9lChoBkdAcuzgKneiz2gHS9JoCEdAh/yo55qubXV9lChoBkdAcY8jPOY6XGgHS9xoCEdAh/3G0mdAgXV9lChoBkdAcaRuhK15SmgHS+hoCEdAh/48/MW43HV9lChoBkdAcw1RIBikPGgHS+ZoCEdAh/8oDoyKvXV9lChoBkdAcIESDyvs7mgHS+BoCEdAh//RAjY7JXV9lChoBkdAcOruTibUgGgHS9xoCEdAiABFHavicXV9lChoBkdAcFauJUHY6GgHS8doCEdAiAFJOFg2InV9lChoBkdAcWMRaouPFWgHS9doCEdAiAF4wyqMnHV9lChoBkdAcm/73PAwf2gHS+1oCEdAiAJZylvZRXV9lChoBkdAc0x/cWTHKmgHTQcBaAhHQIgDyHVPN3Z1fZQoaAZHQG39Jn6Eal1oB0vcaAhHQIgEB1s+FDh1fZQoaAZHQHHr/FzdUKloB0vHaAhHQIgESpm29ct1fZQoaAZHQHOZrWVeKKpoB0vCaAhHQIgEsWdmQKd1fZQoaAZHQHHbLFGXokloB0vcaAhHQIgExIxxkup1fZQoaAZHQHJ3YbXHzYpoB0vfaAhHQIgHFfZ26kJ1fZQoaAZHQHFxzkELYwtoB00JAWgIR0CIB38BuGbkdX2UKGgGR0BWqGSt/4IsaAdLpGgIR0CIB/Jmukk9dX2UKGgGR0BveM8vEjxDaAdL32gIR0CICLMJQcghdX2UKGgGR0BwjTSmZVn3aAdL3GgIR0CICYJUHY6GdX2UKGgGR0BzOnBrN4Z/aAdL/2gIR0CICcoNNJvpdX2UKGgGR0BxBZjQRf4RaAdL6GgIR0CICsrhBJI2dX2UKGgGR0BuWWP91loUaAdL0mgIR0CIC3yOq//OdX2UKGgGR0BwR1xo7FKkaAdL/GgIR0CIDZseGO+7dX2UKGgGR0Bv0ohIOH32aAdL52gIR0CIDbWPLgXNdX2UKGgGR0ByyMNy5qdpaAdL1WgIR0CIDkjsUqQSdX2UKGgGR0BwOfZlFtsOaAdL1mgIR0CIDulwcYIjdX2UKGgGR0Bvrf1YhdMTaAdL22gIR0CIDuLZzxPPdX2UKGgGR0Bxf7PWxyGSaAdL0GgIR0CIDxQTEit8dX2UKGgGR0Bx3T0163RYaAdL22gIR0CID6oKlYU4dX2UKGgGR0BxCf8AJb+taAdLzmgIR0CIEcrNnoPkdX2UKGgGR0Bz0v+1jRUnaAdL6GgIR0CIErgVoHs1dX2UKGgGR0BxuthsqJ/HaAdLzGgIR0CIEwOearmydX2UKGgGR0BxDvrPdEb6aAdLymgIR0CIE8xHoX9BdX2UKGgGR0ByDJkwvg3taAdLxGgIR0CIFYwg1WKedX2UKGgGR0Bzjvoq0+khaAdL52gIR0CIFZ9NN8E3dX2UKGgGR0ByOI+1SflIaAdL2WgIR0CIFe89Oh0ydX2UKGgGR0ByKo/UvwmWaAdL1mgIR0CIGL8QZn+RdX2UKGgGR0BxpxzvJA+qaAdL5GgIR0CIGZMjeKsNdX2UKGgGR0ByIHjp9qk/aAdL4GgIR0CIGitsenyedX2UKGgGR0BxNrV9Wp6yaAdL12gIR0CIGpo6jnFHdX2UKGgGR0BvJ2QuEmICaAdL3GgIR0CIGq/Z/Tb4dX2UKGgGR0BxaZwo9cKPaAdL4GgIR0CIGvJaJQ+EdX2UKGgGR0BxFosVclgMaAdL2GgIR0CIG2VRk3CLdX2UKGgGR0Bu9OhRIjGDaAdNkQFoCEdAiB1Qob4rSXV9lChoBkdAcKEoA4n4PGgHS9FoCEdAiB2UQ04zanV9lChoBkdAbtl/8VHnU2gHS+ZoCEdAiB+xOUMXrXV9lChoBkdAcVRayrxRVWgHS/JoCEdAiCCcvEjxC3V9lChoBkdAcc03r2QGOmgHS9RoCEdAiCGeJpFkQXV9lChoBkdAcOtsLv1DjWgHS9JoCEdAiCGU3n6l+HV9lChoBkdAZHnn8Kohp2gHTdsDaAhHQIgiLD63y7R1fZQoaAZHQHIsOOsDGLloB00LAWgIR0CIIpp0OmSAdX2UKGgGR0Bwer+ee4CqaAdNAwFoCEdAiCQgFotcwHV9lChoBkdAcCzyhi9ZimgHS9NoCEdAiCRCvX9R8HV9lChoBkdAczhOinHeamgHS9ZoCEdAiCTrUkOZs3V9lChoBkdAcwlWLP2PDGgHS9VoCEdAiCWWgezUqnV9lChoBkdAby3BSk0rLGgHS8xoCEdAiCXARkEs8XV9lChoBkdAc225e7cwg2gHS+NoCEdAiCYg0TDfnHV9lChoBkdAceDptaY/mmgHS/5oCEdAiCb+pOvdM3V9lChoBkdAcJHuxbB42WgHS/doCEdAiCc1VghKUXV9lChoBkdAcXPKvFFUhmgHS9FoCEdAiCeRn3+MqHV9lChoBkdAcQicu8K5TmgHS9toCEdAiCfMA/9pAXV9lChoBkdAc8jFt8/lhmgHS9NoCEdAiClKGtZFHHV9lChoBkdAcyN3bVSXMWgHS8xoCEdAiCqTV2A5JnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 496,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 4,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62ecb7ee009cd49d6b2c6a707543dd5e1f8c4fece97a846bb13fc7f3c8e07b1c
|
3 |
+
size 88490
|
ppo-LunarLander-v2-2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c47a191a5dba3465904a2d030065b9a937c0c23f94239ea34096bca049115fa0
|
3 |
+
size 43762
|
ppo-LunarLander-v2-2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.5847364, "std_reward": 19.63065601021567, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-19T11:11:00.666706"}
|