train
Browse files- train/addind_data.py +115 -0
- train/adversarial_training.py +166 -0
- train/train_utiliy.py +27 -0
- train/training.py +56 -0
train/addind_data.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle
|
3 |
+
import tensorflow.keras.backend as K
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
import tensorflow as tf
|
7 |
+
from cleverhans.tf2.attacks.fast_gradient_method import fast_gradient_method
|
8 |
+
from tensorflow.keras.optimizers import SGD
|
9 |
+
from tensorflow.keras.callbacks import Callback, LearningRateScheduler, EarlyStopping
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
import pandas as pd
|
12 |
+
import numpy as np
|
13 |
+
from sklearn.preprocessing import LabelEncoder
|
14 |
+
from tensorflow.keras.utils import to_categorical
|
15 |
+
from sklearn.model_selection import KFold
|
16 |
+
import gzip
|
17 |
+
from train_utily import noise
|
18 |
+
import warnings
|
19 |
+
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
import tensorflow
|
22 |
+
|
23 |
+
print("\nTensorflow Version: " + tf.__version__)
|
24 |
+
from _utility import lrate, get_adversarial_examples, print_test
|
25 |
+
from wresnet import WideResidualNetwork
|
26 |
+
import os
|
27 |
+
|
28 |
+
## globals
|
29 |
+
epsilons = [0.001, 0.003, 0.005, 0.01, 0.03]
|
30 |
+
percents = [0.25, 0.5, 0.75, 1.0]
|
31 |
+
os.mkdir("RandomnoiseModels")
|
32 |
+
os.mkdir("AEModels")
|
33 |
+
folder_list = ["RandomnoiseModels", "AEModels"]
|
34 |
+
|
35 |
+
|
36 |
+
def data_augmentation(epsilon, percent, X, Y, perturbation_type):
|
37 |
+
split = int(len(X) * percent)
|
38 |
+
file_name = str(epsilon) + ".pickle"
|
39 |
+
X_adv_percent = list()
|
40 |
+
if perturbation_type[0] == "FGSM":
|
41 |
+
X_adv_percent = get_adversarial_examples(model, X[:split], Y[:split], epsilon)
|
42 |
+
else:
|
43 |
+
X_adv_percent = noise(X[:split], eps=epsilon)
|
44 |
+
|
45 |
+
aug_X = np.concatenate((X, X_adv_percent), axis=0)
|
46 |
+
Y_adv = Y[:split]
|
47 |
+
aug_Y = np.concatenate((Y, Y_adv), axis=0)
|
48 |
+
|
49 |
+
return aug_X, aug_Y
|
50 |
+
|
51 |
+
|
52 |
+
def experiments(X, Y, folder):
|
53 |
+
|
54 |
+
perturbation_type = ["FGSM" if folder == "AEModels" else "Random"]
|
55 |
+
|
56 |
+
for epsilon in epsilons:
|
57 |
+
for percent in percents:
|
58 |
+
aug_X, aug_Y = data_augmentation(epsilon, percent, X, Y, perturbation_type)
|
59 |
+
train(aug_X, aug_Y, percent, epsilon, folder)
|
60 |
+
|
61 |
+
|
62 |
+
def train(X, Y, percent, epsilon, folder):
|
63 |
+
|
64 |
+
"Ten fold CVs of ResNet"
|
65 |
+
BS = 64
|
66 |
+
init = (32, 32, 1)
|
67 |
+
sgd = SGD(lr=0.1, momentum=0.9)
|
68 |
+
kfold = KFold(n_splits=10, random_state=42, shuffle=False)
|
69 |
+
model_name = folder + "/ResNet_" + str(epsilon) + "_" + str(percent)
|
70 |
+
|
71 |
+
for j, (train, val) in enumerate(kfold.split(X)):
|
72 |
+
|
73 |
+
resnet = WideResidualNetwork(
|
74 |
+
init, 0.0001, 0.9, nb_classes=4, N=2, k=1, dropout=0.0
|
75 |
+
)
|
76 |
+
model = resnet.create_wide_residual_network()
|
77 |
+
|
78 |
+
x_train, y_train = X[train], Y[train]
|
79 |
+
x_val, y_val = X[val], Y[val]
|
80 |
+
|
81 |
+
model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["acc"])
|
82 |
+
|
83 |
+
hist = model.fit(
|
84 |
+
generator.flow(x_train, y_train, batch_size=64),
|
85 |
+
steps_per_epoch=len(x_train) // 64,
|
86 |
+
epochs=50,
|
87 |
+
validation_data=(x_val, y_val),
|
88 |
+
validation_steps=len(x_val) // 64,
|
89 |
+
callbacks=[lrate],
|
90 |
+
)
|
91 |
+
|
92 |
+
name = model_name + "_" + str(j) + ".h5"
|
93 |
+
hist_name = model_name + "_acc" + "_" + str(j) + ".pickle"
|
94 |
+
hist_name_loss = model_name + "_loss" + "_" + str(j) + ".pickle"
|
95 |
+
|
96 |
+
with open(hist_name, "wb") as f:
|
97 |
+
pickle.dump(hist.history["val_acc"], f)
|
98 |
+
|
99 |
+
with open(hist_name_loss, "wb") as f:
|
100 |
+
pickle.dump(hist.history["val_loss"], f)
|
101 |
+
|
102 |
+
model.save_weights(name)
|
103 |
+
|
104 |
+
|
105 |
+
data = hkl.load("data.hkl")
|
106 |
+
|
107 |
+
X_train, X_test, Y_train, y_test = (
|
108 |
+
data["xtrain"],
|
109 |
+
data["xtest"],
|
110 |
+
data["ytrain"],
|
111 |
+
data["ytest"],
|
112 |
+
)
|
113 |
+
|
114 |
+
for folder in folder_list:
|
115 |
+
experiments(X_train, Y_train, folder)
|
train/adversarial_training.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from cleverhans.future.tf2.attacks import fast_gradient_method
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.model_selection import KFold
|
5 |
+
import sys
|
6 |
+
import tensorflow
|
7 |
+
import tensorflow as tf
|
8 |
+
from multiprocessing import Pool
|
9 |
+
|
10 |
+
from _utility import lrate, get_adversarial_examples, print_test, step_decay
|
11 |
+
import hickle as hkl
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
model_name = "ResNet_da"
|
15 |
+
|
16 |
+
|
17 |
+
class AdversarialTraining(object):
|
18 |
+
"""
|
19 |
+
The class provides an adversarial training for a given model and epsilon values.
|
20 |
+
In addition to this, the class changes the half of the batch with their adversarial examples.
|
21 |
+
The adversarial exaples obtain using fast gradient sign method of CleverHans framework.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, parameter):
|
25 |
+
self.epochs = parameter["epochs"]
|
26 |
+
self.batch_size = parameter["batch_size"]
|
27 |
+
self.optimizer = parameter["optimizer"]
|
28 |
+
|
29 |
+
self.generator = tf.keras.preprocessing.image.ImageDataGenerator(
|
30 |
+
rotation_range=10,
|
31 |
+
width_shift_range=5.0 / 32,
|
32 |
+
height_shift_range=5.0 / 32,
|
33 |
+
)
|
34 |
+
|
35 |
+
def train(self, model, train_dataset, val_dataset, epsilon_list):
|
36 |
+
|
37 |
+
# Ten fold cross validation
|
38 |
+
for epoch in range(self.epochs):
|
39 |
+
lr_rate = step_decay(epoch)
|
40 |
+
tf.keras.backend.set_value(model.optimizer.learning_rate, lr_rate)
|
41 |
+
|
42 |
+
for step, (x_train, y_train) in enumerate(train_dataset):
|
43 |
+
print(step)
|
44 |
+
x_train = self.data_augmentation(x_train, y_train, model, epsilon_list)
|
45 |
+
model.fit(
|
46 |
+
self.generator.flow(x_train, y_train, self.batch_size),
|
47 |
+
batch_size=self.batch_size,
|
48 |
+
verbose=0.0,
|
49 |
+
)
|
50 |
+
|
51 |
+
def data_augmentation(self, X_train, Y_train, pretrained_model, epsilon_list):
|
52 |
+
"""[summary]
|
53 |
+
|
54 |
+
Args:
|
55 |
+
X_train ([type]): Training inputs
|
56 |
+
Y_train ([type]): outputs
|
57 |
+
epsilon_list ([type]): according to SNR
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
augmented batch which consists of the adversarial and clean examples.
|
61 |
+
"""
|
62 |
+
first_half_end = int(len(X_train) / 2)
|
63 |
+
second_half_end = int(len(X_train))
|
64 |
+
x_clean = X_train[0:first_half_end, :, :, :]
|
65 |
+
x_adv = self.get_adversarial(
|
66 |
+
pretrained_model,
|
67 |
+
X_train[first_half_end:second_half_end, :, :, :],
|
68 |
+
Y_train[first_half_end:second_half_end],
|
69 |
+
epsilon_list,
|
70 |
+
)
|
71 |
+
x_mix = self.merge_data(x_clean, x_adv)
|
72 |
+
y_mix = Y_train[0:second_half_end]
|
73 |
+
|
74 |
+
return x_mix, y_mix
|
75 |
+
|
76 |
+
def merge_data(self, x_clean, x_adv):
|
77 |
+
"""[summary]
|
78 |
+
|
79 |
+
Args:
|
80 |
+
x_clean ([type]): [description]
|
81 |
+
x_adv ([type]): [description]
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
combine the clean and adversarial inputs.
|
85 |
+
"""
|
86 |
+
x_mix = []
|
87 |
+
for i in range(len(x_clean)):
|
88 |
+
x_mix.append(x_clean[i])
|
89 |
+
for j in range(len(x_adv)):
|
90 |
+
x_mix.append(x_adv[j])
|
91 |
+
x_mix = np.array(x_mix)
|
92 |
+
|
93 |
+
return x_mix
|
94 |
+
|
95 |
+
def get_adversarial(self, logits_model, X_true, y_true, epsilon_list):
|
96 |
+
return self.adversarial_example(logits_model, X_true, y_true, epsilon_list)
|
97 |
+
|
98 |
+
def adversarial_example(self, logits_model, X_true, y_true, epsilon_list):
|
99 |
+
X_adv = []
|
100 |
+
|
101 |
+
for index, x_true in enumerate(X_true):
|
102 |
+
epsilon = epsilon_list[index]
|
103 |
+
|
104 |
+
original_image = x_true
|
105 |
+
original_image = tf.reshape(original_image, (1, 32, 32))
|
106 |
+
original_label = y_true[index]
|
107 |
+
original_label = np.reshape(np.argmax(original_label), (1,)).astype("int64")
|
108 |
+
adv_example_targeted_label = fast_gradient_method(
|
109 |
+
logits_model,
|
110 |
+
original_image,
|
111 |
+
epsilon,
|
112 |
+
np.inf,
|
113 |
+
y=original_label,
|
114 |
+
targeted=False,
|
115 |
+
)
|
116 |
+
X_adv.append(np.array(adv_example_targeted_label).reshape(32, 32, 1))
|
117 |
+
X_adv = np.array(X_adv)
|
118 |
+
|
119 |
+
return X_adv
|
120 |
+
|
121 |
+
|
122 |
+
def simulate_train(s):
|
123 |
+
|
124 |
+
for j, (train, val) in enumerate(kfold.split(X_train)):
|
125 |
+
if j == s:
|
126 |
+
print(s)
|
127 |
+
model = wideresnet.create_wide_residual_network()
|
128 |
+
model.compile(
|
129 |
+
loss="categorical_crossentropy", optimizer=sgd, metrics=["acc"]
|
130 |
+
)
|
131 |
+
print("Finished compiling")
|
132 |
+
x_train, y_train = X_train[train], Y_train[train]
|
133 |
+
x_val, y_val = X_train[val], Y_train[val]
|
134 |
+
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
|
135 |
+
train_dataset = train_dataset.batch(BS)
|
136 |
+
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val))
|
137 |
+
val_dataset = val_dataset.batch(BS)
|
138 |
+
adversarial_training.train(model, train_dataset, val_dataset, epsilons)
|
139 |
+
name = model_name + "_" + str(j) + ".h5"
|
140 |
+
model.save_weights(name)
|
141 |
+
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
|
145 |
+
data = hkl.load("data.hkl")
|
146 |
+
X_train, X_test, Y_train, y_test = (
|
147 |
+
data["xtrain"],
|
148 |
+
data["xtest"],
|
149 |
+
data["ytrain"],
|
150 |
+
data["ytest"],
|
151 |
+
)
|
152 |
+
epsilons = [i / 1000 for i in range(1, 33)] # factor for fast gradient sign method
|
153 |
+
|
154 |
+
kfold = KFold(n_splits=10, random_state=42, shuffle=False)
|
155 |
+
EPOCHS = 50
|
156 |
+
BS = 64
|
157 |
+
init = (32, 32, 1)
|
158 |
+
sgd = SGD(lr=0.1, momentum=0.9)
|
159 |
+
parameter = {"epochs": EPOCHS, "batch_size": BS, "optimizer": sgd}
|
160 |
+
# change here depending on your model
|
161 |
+
wideresnet = WideResidualNetwork(
|
162 |
+
init, 0.0001, 0.9, nb_classes=4, N=2, k=1, dropout=0.0
|
163 |
+
)
|
164 |
+
|
165 |
+
with Pool(10) as p:
|
166 |
+
print(p.map(f, np.range(10)))
|
train/train_utiliy.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def noise(x, eps=0.3, order=np.inf, clip_min=None, clip_max=None):
|
5 |
+
"""
|
6 |
+
A weak attack that just picks a random point in the attacker's action
|
7 |
+
space. When combined with an attack bundling function, this can be used to
|
8 |
+
implement random search.
|
9 |
+
References:
|
10 |
+
https://arxiv.org/abs/1802.00420 recommends random search to help identify
|
11 |
+
gradient masking
|
12 |
+
https://openreview.net/forum?id=H1g0piA9tQ recommends using noise as part
|
13 |
+
of an attack building recipe combining many different optimizers to
|
14 |
+
yield a strong optimizer.
|
15 |
+
Arguments
|
16 |
+
---------
|
17 |
+
x : torch.Tensor
|
18 |
+
The input image.
|
19 |
+
"""
|
20 |
+
|
21 |
+
if order != np.inf:
|
22 |
+
raise NotImplementedError(ord)
|
23 |
+
|
24 |
+
eta = np.random.uniform(low=-eps, high=eps, size=x.shape)
|
25 |
+
adv_x = x + eta
|
26 |
+
|
27 |
+
return adv_x
|
train/training.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from cleverhans.future.tf2.attacks import fast_gradient_method
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.model_selection import KFold
|
5 |
+
import sys
|
6 |
+
import tensorflow
|
7 |
+
import tensorflow as tf
|
8 |
+
|
9 |
+
from _utility import print_test, get_adversarial_examples
|
10 |
+
|
11 |
+
import pickle
|
12 |
+
|
13 |
+
folder_name = "./adversarial_examples_parseval_net/src/logs/saved_models/"
|
14 |
+
|
15 |
+
|
16 |
+
def train(
|
17 |
+
instance,
|
18 |
+
X_train,
|
19 |
+
Y_train,
|
20 |
+
X_test,
|
21 |
+
y_test,
|
22 |
+
epochs,
|
23 |
+
BS,
|
24 |
+
sgd,
|
25 |
+
generator,
|
26 |
+
callbacks_list,
|
27 |
+
model_name="ResNet",
|
28 |
+
):
|
29 |
+
|
30 |
+
kfold = KFold(n_splits=10, random_state=42, shuffle=False)
|
31 |
+
|
32 |
+
for j, (train, val) in enumerate(kfold.split(X_train)):
|
33 |
+
|
34 |
+
model = instance.create_wide_residual_network()
|
35 |
+
model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=["acc"])
|
36 |
+
|
37 |
+
print("Finished compiling")
|
38 |
+
|
39 |
+
x_train, y_train = X_train[train], Y_train[train]
|
40 |
+
x_val, y_val = X_train[val], Y_train[val]
|
41 |
+
|
42 |
+
hist = model.fit(
|
43 |
+
generator.flow(x_train, y_train, batch_size=BS),
|
44 |
+
steps_per_epoch=len(x_train) // BS,
|
45 |
+
epochs=epochs,
|
46 |
+
callbacks=callbacks_list,
|
47 |
+
validation_data=(x_val, y_val),
|
48 |
+
validation_steps=x_val.shape[0] // BS,
|
49 |
+
)
|
50 |
+
## write the history
|
51 |
+
|
52 |
+
with open("history_" + model_name + str(j), "wb") as file_pi:
|
53 |
+
pickle.dump(hist.history, file_pi)
|
54 |
+
|
55 |
+
model_name = folder_name + model_name + "_" + str(j) + ".h5"
|
56 |
+
model.save(model_name)
|