Video Classification
vision
Andy1621 commited on
Commit
630af1a
1 Parent(s): 98eb9e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md CHANGED
@@ -1,3 +1,99 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - vision
5
+ - video-classification
6
+ datasets:
7
+ - kinetics-400
8
+ - kinetics-600
9
+ - something-something-v1
10
+ - something-something-v2
11
  ---
12
+
13
+ # UniFormer (video model)
14
+
15
+ UniFormer models are trained on [Kinetics](https://deepmind.com/research/open-source/kinetics) and [Something-Something](https://20bn.com/datasets/something-something) at resolution 224x224.
16
+ It was introduced in the paper [UniFormer: Unifying Convolution and Self-attention for Visual Recognition](https://arxiv.org/abs/2201.09450) by Li et al,
17
+ and first released in [this repository](https://github.com/Sense-X/UniFormer).
18
+
19
+
20
+ ## Model description
21
+
22
+ The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format.
23
+ It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation.
24
+
25
+ Without any extra training data,
26
+ UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification.
27
+ With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks.
28
+ UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600,
29
+ and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks.
30
+ It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task,
31
+ **50.8** mIoU on ADE20K semantic segmentation task,
32
+ and **77.4** AP on COCO pose estimation task.
33
+
34
+ ![model image](https://github.com/Sense-X/UniFormer/blob/main/figures/framework.png)
35
+
36
+ [Source](https://paperswithcode.com/paper/uniformer-unifying-convolution-and-self)
37
+
38
+ ## Intended uses & limitations
39
+
40
+ You can use the raw model for video classification.
41
+ We now only upload the powerful models with **single clip**.
42
+ More models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/video_classification).
43
+
44
+ ### Kinetics
45
+ | Model | #Frame | Sampling Stride | FLOPs | K400 Top-1 | K600 Top-1 |
46
+ | ----------- | ------ | --------------- | ----- | ---------- | ---------- |
47
+ | UniFormer-S | 16x1x1 | 8 | 41.8G | 78.4 | 80.8 |
48
+ | UniFormer-B | 16x1x1 | 8 | 96.7G | 79.3 | 81.7 |
49
+ | UniFormer-B | 32x1x1 | 4 | 259G | 80.9 | 82.4 |
50
+
51
+
52
+ ### Something-Something
53
+ | Model | #Frame | FLOPs | SSV1 Top-1 | SSV2 Top-1 |
54
+ | ----------- | ------ | ----- | ---------- | ---------- |
55
+ | UniFormer-S | 16x1x1 | 41.8G | 54.4 | 65.0 |
56
+ | UniFormer-B | 32x1x1 | 259G | 58.0 | 67.5 |
57
+
58
+
59
+ ### How to use
60
+
61
+ You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_image_demo/tree/main) to use our models.
62
+
63
+ ```python
64
+ from uniformer import uniformer_small
65
+ from kinetics_class_index import kinetics_classnames
66
+
67
+
68
+ model = uniformer_small()
69
+ # load state
70
+ model_path = hf_hub_download(repo_id="Sense-X/uniformer_video", filename="uniformer_small_k400_16x8.pth")
71
+ state_dict = torch.load(model_path, map_location='cpu')
72
+ model.load_state_dict(state_dict)
73
+ # set to eval mode
74
+ model = model.to(device)
75
+ model = model.eval()
76
+
77
+ # please refer to the following url to process video of Kinetics:
78
+ # https://huggingface.co/spaces/Sense-X/uniformer_video_demo/blob/main/app.py
79
+ vid = load_video(video)
80
+
81
+ # model predicts one of the 400 Kintics classes
82
+ prediction = model(vid)
83
+ predicted_class_idx = prediction.flatten().argmax(-1).item()
84
+ print("Predicted class:", kinetics_classnames[str(predicted_class_idx)])
85
+ ```
86
+
87
+
88
+ ### BibTeX entry and citation info
89
+
90
+ ```bibtex
91
+ @misc{li2022uniformer,
92
+ title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning},
93
+ author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
94
+ year={2022},
95
+ eprint={2201.04676},
96
+ archivePrefix={arXiv},
97
+ primaryClass={cs.CV}
98
+ }
99
+ ```