--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.91 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3273 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5056 | 1.0 | 112 | 0.5669 | 0.85 | | 0.2324 | 2.0 | 225 | 0.5131 | 0.85 | | 0.2623 | 3.0 | 337 | 0.6539 | 0.79 | | 0.4419 | 4.0 | 450 | 0.7401 | 0.83 | | 0.0177 | 5.0 | 562 | 0.5134 | 0.85 | | 0.0026 | 6.0 | 675 | 0.3351 | 0.9 | | 0.0046 | 7.0 | 787 | 0.5120 | 0.88 | | 0.0005 | 8.0 | 900 | 0.5165 | 0.91 | | 0.2003 | 9.0 | 1012 | 0.3453 | 0.91 | | 0.0001 | 10.0 | 1125 | 0.3438 | 0.91 | | 0.0003 | 11.0 | 1237 | 0.3324 | 0.92 | | 0.0 | 12.0 | 1350 | 0.3999 | 0.89 | | 0.0 | 13.0 | 1462 | 0.3152 | 0.91 | | 0.0001 | 14.0 | 1575 | 0.3212 | 0.92 | | 0.0 | 15.0 | 1687 | 0.3220 | 0.92 | | 0.0 | 16.0 | 1800 | 0.3343 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3324 | 0.91 | | 0.0 | 18.0 | 2025 | 0.3311 | 0.91 | | 0.0 | 19.0 | 2137 | 0.3292 | 0.91 | | 0.0 | 19.91 | 2240 | 0.3273 | 0.91 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3