ta264 commited on
Commit
86c3322
·
1 Parent(s): 7f83d39

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -4
README.md CHANGED
@@ -1,7 +1,89 @@
1
  ---
2
- widget:
3
- - text: "The.French.Movie.2013.720p.BluRay.x264.German-ROUGH[PublicHD]"
4
- example_title: "Movie with language in title"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- Movie parser based on distilbert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - movie_releases
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-finetuned-radarr
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: movie_releases
20
+ type: movie_releases
21
+ args: default
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9555421444377389
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9638798701298701
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9596928982725529
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9817602584524263
35
  ---
36
 
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # bert-finetuned-radarr
41
+
42
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the movie_releases dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0731
45
+ - Precision: 0.9555
46
+ - Recall: 0.9639
47
+ - F1: 0.9597
48
+ - Accuracy: 0.9818
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 8
69
+ - eval_batch_size: 8
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.0431 | 1.0 | 1191 | 0.1403 | 0.9436 | 0.9574 | 0.9504 | 0.9626 |
80
+ | 0.0236 | 2.0 | 2382 | 0.0881 | 0.9485 | 0.9560 | 0.9522 | 0.9694 |
81
+ | 0.0138 | 3.0 | 3573 | 0.0731 | 0.9555 | 0.9639 | 0.9597 | 0.9818 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.20.1
87
+ - Pytorch 1.11.0+cu113
88
+ - Datasets 2.3.2
89
+ - Tokenizers 0.12.1