deberta-v3-large__sst2__train-8-5
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3078
- Accuracy: 0.6930
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6813 | 1.0 | 3 | 0.7842 | 0.25 |
0.6617 | 2.0 | 6 | 0.7968 | 0.25 |
0.6945 | 3.0 | 9 | 0.7746 | 0.25 |
0.5967 | 4.0 | 12 | 0.7557 | 0.25 |
0.4824 | 5.0 | 15 | 0.6920 | 0.25 |
0.3037 | 6.0 | 18 | 0.6958 | 0.5 |
0.2329 | 7.0 | 21 | 0.6736 | 0.5 |
0.1441 | 8.0 | 24 | 0.3749 | 1.0 |
0.0875 | 9.0 | 27 | 0.3263 | 0.75 |
0.0655 | 10.0 | 30 | 0.3525 | 0.75 |
0.0373 | 11.0 | 33 | 0.1993 | 1.0 |
0.0173 | 12.0 | 36 | 0.1396 | 1.0 |
0.0147 | 13.0 | 39 | 0.0655 | 1.0 |
0.0084 | 14.0 | 42 | 0.0343 | 1.0 |
0.0049 | 15.0 | 45 | 0.0225 | 1.0 |
0.004 | 16.0 | 48 | 0.0167 | 1.0 |
0.003 | 17.0 | 51 | 0.0134 | 1.0 |
0.0027 | 18.0 | 54 | 0.0114 | 1.0 |
0.002 | 19.0 | 57 | 0.0104 | 1.0 |
0.0015 | 20.0 | 60 | 0.0099 | 1.0 |
0.0014 | 21.0 | 63 | 0.0095 | 1.0 |
0.0013 | 22.0 | 66 | 0.0095 | 1.0 |
0.0012 | 23.0 | 69 | 0.0091 | 1.0 |
0.0011 | 24.0 | 72 | 0.0085 | 1.0 |
0.0009 | 25.0 | 75 | 0.0081 | 1.0 |
0.001 | 26.0 | 78 | 0.0077 | 1.0 |
0.0008 | 27.0 | 81 | 0.0074 | 1.0 |
0.0009 | 28.0 | 84 | 0.0071 | 1.0 |
0.0007 | 29.0 | 87 | 0.0068 | 1.0 |
0.0008 | 30.0 | 90 | 0.0064 | 1.0 |
0.0007 | 31.0 | 93 | 0.0062 | 1.0 |
0.0007 | 32.0 | 96 | 0.0059 | 1.0 |
0.0007 | 33.0 | 99 | 0.0056 | 1.0 |
0.0005 | 34.0 | 102 | 0.0054 | 1.0 |
0.0006 | 35.0 | 105 | 0.0053 | 1.0 |
0.0008 | 36.0 | 108 | 0.0051 | 1.0 |
0.0007 | 37.0 | 111 | 0.0050 | 1.0 |
0.0007 | 38.0 | 114 | 0.0049 | 1.0 |
0.0006 | 39.0 | 117 | 0.0048 | 1.0 |
0.0005 | 40.0 | 120 | 0.0048 | 1.0 |
0.0005 | 41.0 | 123 | 0.0048 | 1.0 |
0.0005 | 42.0 | 126 | 0.0047 | 1.0 |
0.0005 | 43.0 | 129 | 0.0047 | 1.0 |
0.0005 | 44.0 | 132 | 0.0047 | 1.0 |
0.0006 | 45.0 | 135 | 0.0047 | 1.0 |
0.0005 | 46.0 | 138 | 0.0047 | 1.0 |
0.0005 | 47.0 | 141 | 0.0047 | 1.0 |
0.0006 | 48.0 | 144 | 0.0047 | 1.0 |
0.0005 | 49.0 | 147 | 0.0047 | 1.0 |
0.0005 | 50.0 | 150 | 0.0047 | 1.0 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.10.3
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.