update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: deberta-v3-large__sst2__train-8-6
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# deberta-v3-large__sst2__train-8-6
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.4331
|
20 |
+
- Accuracy: 0.7106
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.6486 | 1.0 | 3 | 0.7901 | 0.25 |
|
53 |
+
| 0.6418 | 2.0 | 6 | 0.9259 | 0.25 |
|
54 |
+
| 0.6169 | 3.0 | 9 | 1.0574 | 0.25 |
|
55 |
+
| 0.5639 | 4.0 | 12 | 1.1372 | 0.25 |
|
56 |
+
| 0.4562 | 5.0 | 15 | 0.6090 | 0.5 |
|
57 |
+
| 0.3105 | 6.0 | 18 | 0.4435 | 1.0 |
|
58 |
+
| 0.2303 | 7.0 | 21 | 0.2804 | 1.0 |
|
59 |
+
| 0.1388 | 8.0 | 24 | 0.2205 | 1.0 |
|
60 |
+
| 0.0918 | 9.0 | 27 | 0.1282 | 1.0 |
|
61 |
+
| 0.0447 | 10.0 | 30 | 0.0643 | 1.0 |
|
62 |
+
| 0.0297 | 11.0 | 33 | 0.0361 | 1.0 |
|
63 |
+
| 0.0159 | 12.0 | 36 | 0.0211 | 1.0 |
|
64 |
+
| 0.0102 | 13.0 | 39 | 0.0155 | 1.0 |
|
65 |
+
| 0.0061 | 14.0 | 42 | 0.0158 | 1.0 |
|
66 |
+
| 0.0049 | 15.0 | 45 | 0.0189 | 1.0 |
|
67 |
+
| 0.0035 | 16.0 | 48 | 0.0254 | 1.0 |
|
68 |
+
| 0.0027 | 17.0 | 51 | 0.0305 | 1.0 |
|
69 |
+
| 0.0021 | 18.0 | 54 | 0.0287 | 1.0 |
|
70 |
+
| 0.0016 | 19.0 | 57 | 0.0215 | 1.0 |
|
71 |
+
| 0.0016 | 20.0 | 60 | 0.0163 | 1.0 |
|
72 |
+
| 0.0014 | 21.0 | 63 | 0.0138 | 1.0 |
|
73 |
+
| 0.0015 | 22.0 | 66 | 0.0131 | 1.0 |
|
74 |
+
| 0.001 | 23.0 | 69 | 0.0132 | 1.0 |
|
75 |
+
| 0.0014 | 24.0 | 72 | 0.0126 | 1.0 |
|
76 |
+
| 0.0011 | 25.0 | 75 | 0.0125 | 1.0 |
|
77 |
+
| 0.001 | 26.0 | 78 | 0.0119 | 1.0 |
|
78 |
+
| 0.0008 | 27.0 | 81 | 0.0110 | 1.0 |
|
79 |
+
| 0.0007 | 28.0 | 84 | 0.0106 | 1.0 |
|
80 |
+
| 0.0008 | 29.0 | 87 | 0.0095 | 1.0 |
|
81 |
+
| 0.0009 | 30.0 | 90 | 0.0089 | 1.0 |
|
82 |
+
| 0.0008 | 31.0 | 93 | 0.0083 | 1.0 |
|
83 |
+
| 0.0007 | 32.0 | 96 | 0.0075 | 1.0 |
|
84 |
+
| 0.0008 | 33.0 | 99 | 0.0066 | 1.0 |
|
85 |
+
| 0.0006 | 34.0 | 102 | 0.0059 | 1.0 |
|
86 |
+
| 0.0007 | 35.0 | 105 | 0.0054 | 1.0 |
|
87 |
+
| 0.0008 | 36.0 | 108 | 0.0051 | 1.0 |
|
88 |
+
| 0.0007 | 37.0 | 111 | 0.0049 | 1.0 |
|
89 |
+
| 0.0007 | 38.0 | 114 | 0.0047 | 1.0 |
|
90 |
+
| 0.0006 | 39.0 | 117 | 0.0045 | 1.0 |
|
91 |
+
| 0.0006 | 40.0 | 120 | 0.0046 | 1.0 |
|
92 |
+
| 0.0005 | 41.0 | 123 | 0.0045 | 1.0 |
|
93 |
+
| 0.0006 | 42.0 | 126 | 0.0044 | 1.0 |
|
94 |
+
| 0.0006 | 43.0 | 129 | 0.0043 | 1.0 |
|
95 |
+
| 0.0006 | 44.0 | 132 | 0.0044 | 1.0 |
|
96 |
+
| 0.0005 | 45.0 | 135 | 0.0045 | 1.0 |
|
97 |
+
| 0.0006 | 46.0 | 138 | 0.0043 | 1.0 |
|
98 |
+
| 0.0006 | 47.0 | 141 | 0.0043 | 1.0 |
|
99 |
+
| 0.0006 | 48.0 | 144 | 0.0041 | 1.0 |
|
100 |
+
| 0.0007 | 49.0 | 147 | 0.0042 | 1.0 |
|
101 |
+
| 0.0005 | 50.0 | 150 | 0.0042 | 1.0 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.15.0
|
107 |
+
- Pytorch 1.10.2+cu102
|
108 |
+
- Datasets 1.18.2
|
109 |
+
- Tokenizers 0.10.3
|