update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: distilbert-base-uncased-continued_training-medqa
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# distilbert-base-uncased-continued_training-medqa
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Shaier/distilbert-base-uncased-finetuned-medqa](https://huggingface.co/Shaier/distilbert-base-uncased-finetuned-medqa) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.4057
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 2e-05
|
36 |
+
- train_batch_size: 64
|
37 |
+
- eval_batch_size: 64
|
38 |
+
- seed: 42
|
39 |
+
- gradient_accumulation_steps: 8
|
40 |
+
- total_train_batch_size: 512
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 100
|
44 |
+
- num_epochs: 110
|
45 |
+
- mixed_precision_training: Native AMP
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| No log | 1.0 | 333 | 0.5673 |
|
52 |
+
| No log | 2.0 | 666 | 0.6109 |
|
53 |
+
| No log | 3.0 | 999 | 0.4928 |
|
54 |
+
| No log | 4.0 | 1332 | 0.5496 |
|
55 |
+
| No log | 5.0 | 1665 | 0.5017 |
|
56 |
+
| No log | 6.0 | 1998 | 0.6361 |
|
57 |
+
| No log | 7.0 | 2331 | 0.5995 |
|
58 |
+
| 0.6107 | 8.0 | 2664 | 0.6359 |
|
59 |
+
| 0.6107 | 9.0 | 2997 | 0.4778 |
|
60 |
+
| 0.6107 | 10.0 | 3330 | 0.5355 |
|
61 |
+
| 0.6107 | 11.0 | 3663 | 0.6210 |
|
62 |
+
| 0.6107 | 12.0 | 3996 | 0.4758 |
|
63 |
+
| 0.6107 | 13.0 | 4329 | 0.5468 |
|
64 |
+
| 0.6107 | 14.0 | 4662 | 0.4659 |
|
65 |
+
| 0.6107 | 15.0 | 4995 | 0.5465 |
|
66 |
+
| 0.5784 | 16.0 | 5328 | 0.3997 |
|
67 |
+
| 0.5784 | 17.0 | 5661 | 0.5352 |
|
68 |
+
| 0.5784 | 18.0 | 5994 | 0.5812 |
|
69 |
+
| 0.5784 | 19.0 | 6327 | 0.6133 |
|
70 |
+
| 0.5784 | 20.0 | 6660 | 0.5050 |
|
71 |
+
| 0.5784 | 21.0 | 6993 | 0.4377 |
|
72 |
+
| 0.5784 | 22.0 | 7326 | 0.4630 |
|
73 |
+
| 0.5784 | 23.0 | 7659 | 0.5162 |
|
74 |
+
| 0.5555 | 24.0 | 7992 | 0.4968 |
|
75 |
+
| 0.5555 | 25.0 | 8325 | 0.5336 |
|
76 |
+
| 0.5555 | 26.0 | 8658 | 0.5146 |
|
77 |
+
| 0.5555 | 27.0 | 8991 | 0.4887 |
|
78 |
+
| 0.5555 | 28.0 | 9324 | 0.5048 |
|
79 |
+
| 0.5555 | 29.0 | 9657 | 0.5092 |
|
80 |
+
| 0.5555 | 30.0 | 9990 | 0.4874 |
|
81 |
+
| 0.5555 | 31.0 | 10323 | 0.5452 |
|
82 |
+
| 0.5392 | 32.0 | 10656 | 0.5303 |
|
83 |
+
| 0.5392 | 33.0 | 10989 | 0.5932 |
|
84 |
+
| 0.5392 | 34.0 | 11322 | 0.4472 |
|
85 |
+
| 0.5392 | 35.0 | 11655 | 0.5796 |
|
86 |
+
| 0.5392 | 36.0 | 11988 | 0.4808 |
|
87 |
+
| 0.5392 | 37.0 | 12321 | 0.4756 |
|
88 |
+
| 0.5392 | 38.0 | 12654 | 0.5552 |
|
89 |
+
| 0.5392 | 39.0 | 12987 | 0.5777 |
|
90 |
+
| 0.5276 | 40.0 | 13320 | 0.5049 |
|
91 |
+
| 0.5276 | 41.0 | 13653 | 0.5141 |
|
92 |
+
| 0.5276 | 42.0 | 13986 | 0.5153 |
|
93 |
+
| 0.5276 | 43.0 | 14319 | 0.5255 |
|
94 |
+
| 0.5276 | 44.0 | 14652 | 0.4948 |
|
95 |
+
| 0.5276 | 45.0 | 14985 | 0.4542 |
|
96 |
+
| 0.5276 | 46.0 | 15318 | 0.3743 |
|
97 |
+
| 0.5276 | 47.0 | 15651 | 0.5167 |
|
98 |
+
| 0.5181 | 48.0 | 15984 | 0.5304 |
|
99 |
+
| 0.5181 | 49.0 | 16317 | 0.5459 |
|
100 |
+
| 0.5181 | 50.0 | 16650 | 0.4616 |
|
101 |
+
| 0.5181 | 51.0 | 16983 | 0.4887 |
|
102 |
+
| 0.5181 | 52.0 | 17316 | 0.4454 |
|
103 |
+
| 0.5181 | 53.0 | 17649 | 0.4665 |
|
104 |
+
| 0.5181 | 54.0 | 17982 | 0.4647 |
|
105 |
+
| 0.5181 | 55.0 | 18315 | 0.4168 |
|
106 |
+
| 0.5102 | 56.0 | 18648 | 0.5703 |
|
107 |
+
| 0.5102 | 57.0 | 18981 | 0.4930 |
|
108 |
+
| 0.5102 | 58.0 | 19314 | 0.4750 |
|
109 |
+
| 0.5102 | 59.0 | 19647 | 0.4853 |
|
110 |
+
| 0.5102 | 60.0 | 19980 | 0.4508 |
|
111 |
+
| 0.5102 | 61.0 | 20313 | 0.5869 |
|
112 |
+
| 0.5102 | 62.0 | 20646 | 0.4975 |
|
113 |
+
| 0.5102 | 63.0 | 20979 | 0.4944 |
|
114 |
+
| 0.5039 | 64.0 | 21312 | 0.4994 |
|
115 |
+
| 0.5039 | 65.0 | 21645 | 0.4257 |
|
116 |
+
| 0.5039 | 66.0 | 21978 | 0.5275 |
|
117 |
+
| 0.5039 | 67.0 | 22311 | 0.4432 |
|
118 |
+
| 0.5039 | 68.0 | 22644 | 0.5080 |
|
119 |
+
| 0.5039 | 69.0 | 22977 | 0.4262 |
|
120 |
+
| 0.5039 | 70.0 | 23310 | 0.5359 |
|
121 |
+
| 0.5039 | 71.0 | 23643 | 0.5504 |
|
122 |
+
| 0.4993 | 72.0 | 23976 | 0.4428 |
|
123 |
+
| 0.4993 | 73.0 | 24309 | 0.4275 |
|
124 |
+
| 0.4993 | 74.0 | 24642 | 0.5607 |
|
125 |
+
| 0.4993 | 75.0 | 24975 | 0.4612 |
|
126 |
+
| 0.4993 | 76.0 | 25308 | 0.5083 |
|
127 |
+
| 0.4993 | 77.0 | 25641 | 0.4803 |
|
128 |
+
| 0.4993 | 78.0 | 25974 | 0.5019 |
|
129 |
+
| 0.4993 | 79.0 | 26307 | 0.4535 |
|
130 |
+
| 0.4957 | 80.0 | 26640 | 0.5364 |
|
131 |
+
| 0.4957 | 81.0 | 26973 | 0.5502 |
|
132 |
+
| 0.4957 | 82.0 | 27306 | 0.4912 |
|
133 |
+
| 0.4957 | 83.0 | 27639 | 0.5563 |
|
134 |
+
| 0.4957 | 84.0 | 27972 | 0.4360 |
|
135 |
+
| 0.4957 | 85.0 | 28305 | 0.4962 |
|
136 |
+
| 0.4957 | 86.0 | 28638 | 0.4523 |
|
137 |
+
| 0.4957 | 87.0 | 28971 | 0.4979 |
|
138 |
+
| 0.4923 | 88.0 | 29304 | 0.4697 |
|
139 |
+
| 0.4923 | 89.0 | 29637 | 0.4730 |
|
140 |
+
| 0.4923 | 90.0 | 29970 | 0.4848 |
|
141 |
+
| 0.4923 | 91.0 | 30303 | 0.4293 |
|
142 |
+
| 0.4923 | 92.0 | 30636 | 0.4745 |
|
143 |
+
| 0.4923 | 93.0 | 30969 | 0.3710 |
|
144 |
+
| 0.4923 | 94.0 | 31302 | 0.4068 |
|
145 |
+
| 0.4923 | 95.0 | 31635 | 0.4980 |
|
146 |
+
| 0.4896 | 96.0 | 31968 | 0.4586 |
|
147 |
+
| 0.4896 | 97.0 | 32301 | 0.5152 |
|
148 |
+
| 0.4896 | 98.0 | 32634 | 0.4636 |
|
149 |
+
| 0.4896 | 99.0 | 32967 | 0.5426 |
|
150 |
+
| 0.4896 | 100.0 | 33300 | 0.4604 |
|
151 |
+
| 0.4896 | 101.0 | 33633 | 0.4925 |
|
152 |
+
| 0.4896 | 102.0 | 33966 | 0.3729 |
|
153 |
+
| 0.4896 | 103.0 | 34299 | 0.4337 |
|
154 |
+
| 0.4882 | 104.0 | 34632 | 0.5307 |
|
155 |
+
| 0.4882 | 105.0 | 34965 | 0.5480 |
|
156 |
+
| 0.4882 | 106.0 | 35298 | 0.4124 |
|
157 |
+
| 0.4882 | 107.0 | 35631 | 0.4862 |
|
158 |
+
| 0.4882 | 108.0 | 35964 | 0.4333 |
|
159 |
+
| 0.4882 | 109.0 | 36297 | 0.4443 |
|
160 |
+
| 0.4882 | 110.0 | 36630 | 0.4890 |
|
161 |
+
|
162 |
+
|
163 |
+
### Framework versions
|
164 |
+
|
165 |
+
- Transformers 4.18.0
|
166 |
+
- Pytorch 1.11.0
|
167 |
+
- Datasets 2.3.2
|
168 |
+
- Tokenizers 0.11.0
|