---
base_model: cointegrated/rubert-tiny2
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:13690
- loss:ContrastiveLoss
widget:
- source_sentence: Тренажер на свободных весах DFC HOMEGYM HM019 в Москве
sentences:
- Независимая бицепс-машина Matrix G7-S40
- Беговая дорожка Stingrey ST-9317
- Мультикомплекс Hasttings Digger HD003-7
- source_sentence: Велотренажер Clear Fit Envy CFB 45 Ego
sentences:
- Эллиптический тренажер Svensson Body Labs Strideline EXA в Москве
- Реабилитационная рама ARMS (стек 60кг) AR082.1х60
- Вертикальная тяга двухпозиционная Vertex OPS 110
- source_sentence: Нижняя тяга Smith SH004
sentences:
- Аэробайк BH FITNESS AIRMAG
- Велотренажер Freemotion Tour De France Club
- Жим ногами под углом 45 градусов Bronze Gym BG-BGR-801
- source_sentence: Эллиптический тренажер BEST FITNESS BFE1
sentences:
- Спин-байк DFC OVICX Q200C
- Эллиптический тренажер NordicTrack E11.6 (NTEVEL99813)
- Беговая дорожка SPIRIT LW650
- source_sentence: Беговая дорожка Hasttings CT100
sentences:
- Мини велотренажер с регулируемой высотой Bradex SF 0830
- Беговая дорожка Koenigsmann ML в Москве
- Вертикальный велотренажер Sole B94 (2023)
model-index:
- name: SentenceTransformer based on cointegrated/rubert-tiny2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: cv
type: cv
metrics:
- type: cosine_accuracy
value: 1.0
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7653387784957886
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 1.0
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7653387784957886
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 1.0
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: dot_accuracy
value: 1.0
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.7653387784957886
name: Dot Accuracy Threshold
- type: dot_f1
value: 1.0
name: Dot F1
- type: dot_f1_threshold
value: 0.7653387784957886
name: Dot F1 Threshold
- type: dot_precision
value: 1.0
name: Dot Precision
- type: dot_recall
value: 1.0
name: Dot Recall
- type: dot_ap
value: 1.0
name: Dot Ap
- type: manhattan_accuracy
value: 1.0
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 9.330949783325195
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 1.0
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.330949783325195
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1.0
name: Manhattan Precision
- type: manhattan_recall
value: 1.0
name: Manhattan Recall
- type: manhattan_ap
value: 1.0
name: Manhattan Ap
- type: euclidean_accuracy
value: 1.0
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.6849288940429688
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 1.0
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.6849288940429688
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1.0
name: Euclidean Precision
- type: euclidean_recall
value: 1.0
name: Euclidean Recall
- type: euclidean_ap
value: 1.0
name: Euclidean Ap
- type: max_accuracy
value: 1.0
name: Max Accuracy
- type: max_accuracy_threshold
value: 9.330949783325195
name: Max Accuracy Threshold
- type: max_f1
value: 1.0
name: Max F1
- type: max_f1_threshold
value: 9.330949783325195
name: Max F1 Threshold
- type: max_precision
value: 1.0
name: Max Precision
- type: max_recall
value: 1.0
name: Max Recall
- type: max_ap
value: 1.0
name: Max Ap
---
# SentenceTransformer based on cointegrated/rubert-tiny2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 312 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Беговая дорожка Hasttings CT100',
'Вертикальный велотренажер Sole B94 (2023)',
'Беговая дорожка Koenigsmann ML в Москве',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `cv`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:--------|
| cosine_accuracy | 1.0 |
| cosine_accuracy_threshold | 0.7653 |
| cosine_f1 | 1.0 |
| cosine_f1_threshold | 0.7653 |
| cosine_precision | 1.0 |
| cosine_recall | 1.0 |
| cosine_ap | 1.0 |
| dot_accuracy | 1.0 |
| dot_accuracy_threshold | 0.7653 |
| dot_f1 | 1.0 |
| dot_f1_threshold | 0.7653 |
| dot_precision | 1.0 |
| dot_recall | 1.0 |
| dot_ap | 1.0 |
| manhattan_accuracy | 1.0 |
| manhattan_accuracy_threshold | 9.3309 |
| manhattan_f1 | 1.0 |
| manhattan_f1_threshold | 9.3309 |
| manhattan_precision | 1.0 |
| manhattan_recall | 1.0 |
| manhattan_ap | 1.0 |
| euclidean_accuracy | 1.0 |
| euclidean_accuracy_threshold | 0.6849 |
| euclidean_f1 | 1.0 |
| euclidean_f1_threshold | 0.6849 |
| euclidean_precision | 1.0 |
| euclidean_recall | 1.0 |
| euclidean_ap | 1.0 |
| max_accuracy | 1.0 |
| max_accuracy_threshold | 9.3309 |
| max_f1 | 1.0 |
| max_f1_threshold | 9.3309 |
| max_precision | 1.0 |
| max_recall | 1.0 |
| **max_ap** | **1.0** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 13,690 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве
| Баттерфляй / Задняя дельта Impulse ExoForm FE9715
| 0.0
|
| Эллиптический тренажер Sports Art E835
| Эллиптический тренажер Clear Fit AirElliptical AE 40
| 1.0
|
| Мультистанция Nohrd SlimBeam
| Сведение бедра UltraGym LF-510
| 0.0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 28 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 28 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Беговая дорожка Carbon Yukon
| Кросстренер Octane Fitness Max Trainer MTX в Москве
| 0.0
|
| Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации
| Беговая дорожка Protrain N6J
| 1.0
|
| Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве
| Ягодичные мышцы Bronze Gym MNM-016A
| 1.0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters