Shakhovak commited on
Commit
a9e10b4
1 Parent(s): 784db19

End of training

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 312,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,608 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: cointegrated/rubert-tiny2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy
6
+ - cosine_accuracy_threshold
7
+ - cosine_f1
8
+ - cosine_f1_threshold
9
+ - cosine_precision
10
+ - cosine_recall
11
+ - cosine_ap
12
+ - dot_accuracy
13
+ - dot_accuracy_threshold
14
+ - dot_f1
15
+ - dot_f1_threshold
16
+ - dot_precision
17
+ - dot_recall
18
+ - dot_ap
19
+ - manhattan_accuracy
20
+ - manhattan_accuracy_threshold
21
+ - manhattan_f1
22
+ - manhattan_f1_threshold
23
+ - manhattan_precision
24
+ - manhattan_recall
25
+ - manhattan_ap
26
+ - euclidean_accuracy
27
+ - euclidean_accuracy_threshold
28
+ - euclidean_f1
29
+ - euclidean_f1_threshold
30
+ - euclidean_precision
31
+ - euclidean_recall
32
+ - euclidean_ap
33
+ - max_accuracy
34
+ - max_accuracy_threshold
35
+ - max_f1
36
+ - max_f1_threshold
37
+ - max_precision
38
+ - max_recall
39
+ - max_ap
40
+ pipeline_tag: sentence-similarity
41
+ tags:
42
+ - sentence-transformers
43
+ - sentence-similarity
44
+ - feature-extraction
45
+ - generated_from_trainer
46
+ - dataset_size:13690
47
+ - loss:ContrastiveLoss
48
+ widget:
49
+ - source_sentence: Грузоблочный тренажер Bronze Gym D-015 - жим ногами в Москве Силовые
50
+ тренажеры Грузоблочные Bronze Gym D-015 - жим ногами
51
+ sentences:
52
+ - Трицепс-машина Matrix G3-S45 Главная Силовые тренажеры Трицепс-машина Matrix G3-S45
53
+ - Верхняя тяга Iron Bull IR-TE08 nan Силовые тренажеры Грузоблочные тренажеры
54
+ - Горизонтальный велоэргометр Matrix Lifestyle с консолью LED nan Велотренажеры
55
+ Matrix
56
+ - source_sentence: Эллиптический тренажер Precor EFX 731 nan Эллиптические тренажеры
57
+ Precor
58
+ sentences:
59
+ - Беговая дорожка коммерческая AeroFit X3-T 10″LCD в Москве Кардиотренажеры Беговые
60
+ дорожки AeroFit X3-T 10″LCD
61
+ - Машина Смита Matrix G1-FW161 Главная Силовые тренажеры Машина Смита Matrix G1-FW161
62
+ - Эллиптический тренажер CardioPower X75 Главная Эллиптические тренажеры Бренды
63
+ - source_sentence: Велотренажер Clear Fit Envy CFB 45 Ego Главная Велотренажеры Бренды
64
+ sentences:
65
+ - Велотренажер Spirit Fitness MU100 реабилитационный в Москве Кардиотренажеры Велотренажеры
66
+ Spirit Fitness MU100 реабилитационный
67
+ - Многофункциональная блочная станция Teca SP785C Две Гребных тяги nan Силовые тренажеры
68
+ Мультистанции
69
+ - Беговая дорожка Sports Art T670 Главная Беговые дорожки Бренды
70
+ - source_sentence: Горизонтальный велотренажер TRUE C400 Главная Велотренажеры Бренды
71
+ sentences:
72
+ - Велотренажер UltraGym UG-B002 nan Велотренажеры UltraGym
73
+ - Грузоблочный тренажер Precor DSL505 - задние дельты/баттерфляй в Москве Силовые
74
+ тренажеры Грузоблочные Precor DSL505 - задние дельты/баттерфляй
75
+ - Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80
76
+ - source_sentence: Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая
77
+ дорожка Hasttings CT100
78
+ sentences:
79
+ - Вертикальная тяга RangeMax CST-018 nan Силовые тренажеры Грузоблочные тренажеры
80
+ - Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910
81
+ - Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды
82
+ model-index:
83
+ - name: SentenceTransformer based on cointegrated/rubert-tiny2
84
+ results:
85
+ - task:
86
+ type: binary-classification
87
+ name: Binary Classification
88
+ dataset:
89
+ name: cv
90
+ type: cv
91
+ metrics:
92
+ - type: cosine_accuracy
93
+ value: 1.0
94
+ name: Cosine Accuracy
95
+ - type: cosine_accuracy_threshold
96
+ value: 0.7240798473358154
97
+ name: Cosine Accuracy Threshold
98
+ - type: cosine_f1
99
+ value: 1.0
100
+ name: Cosine F1
101
+ - type: cosine_f1_threshold
102
+ value: 0.7240798473358154
103
+ name: Cosine F1 Threshold
104
+ - type: cosine_precision
105
+ value: 1.0
106
+ name: Cosine Precision
107
+ - type: cosine_recall
108
+ value: 1.0
109
+ name: Cosine Recall
110
+ - type: cosine_ap
111
+ value: 1.0
112
+ name: Cosine Ap
113
+ - type: dot_accuracy
114
+ value: 1.0
115
+ name: Dot Accuracy
116
+ - type: dot_accuracy_threshold
117
+ value: 0.7240797877311707
118
+ name: Dot Accuracy Threshold
119
+ - type: dot_f1
120
+ value: 1.0
121
+ name: Dot F1
122
+ - type: dot_f1_threshold
123
+ value: 0.7240797877311707
124
+ name: Dot F1 Threshold
125
+ - type: dot_precision
126
+ value: 1.0
127
+ name: Dot Precision
128
+ - type: dot_recall
129
+ value: 1.0
130
+ name: Dot Recall
131
+ - type: dot_ap
132
+ value: 1.0
133
+ name: Dot Ap
134
+ - type: manhattan_accuracy
135
+ value: 1.0
136
+ name: Manhattan Accuracy
137
+ - type: manhattan_accuracy_threshold
138
+ value: 9.055404663085938
139
+ name: Manhattan Accuracy Threshold
140
+ - type: manhattan_f1
141
+ value: 1.0
142
+ name: Manhattan F1
143
+ - type: manhattan_f1_threshold
144
+ value: 9.055404663085938
145
+ name: Manhattan F1 Threshold
146
+ - type: manhattan_precision
147
+ value: 1.0
148
+ name: Manhattan Precision
149
+ - type: manhattan_recall
150
+ value: 1.0
151
+ name: Manhattan Recall
152
+ - type: manhattan_ap
153
+ value: 1.0
154
+ name: Manhattan Ap
155
+ - type: euclidean_accuracy
156
+ value: 1.0
157
+ name: Euclidean Accuracy
158
+ - type: euclidean_accuracy_threshold
159
+ value: 0.6519391536712646
160
+ name: Euclidean Accuracy Threshold
161
+ - type: euclidean_f1
162
+ value: 1.0
163
+ name: Euclidean F1
164
+ - type: euclidean_f1_threshold
165
+ value: 0.6519391536712646
166
+ name: Euclidean F1 Threshold
167
+ - type: euclidean_precision
168
+ value: 1.0
169
+ name: Euclidean Precision
170
+ - type: euclidean_recall
171
+ value: 1.0
172
+ name: Euclidean Recall
173
+ - type: euclidean_ap
174
+ value: 1.0
175
+ name: Euclidean Ap
176
+ - type: max_accuracy
177
+ value: 1.0
178
+ name: Max Accuracy
179
+ - type: max_accuracy_threshold
180
+ value: 9.055404663085938
181
+ name: Max Accuracy Threshold
182
+ - type: max_f1
183
+ value: 1.0
184
+ name: Max F1
185
+ - type: max_f1_threshold
186
+ value: 9.055404663085938
187
+ name: Max F1 Threshold
188
+ - type: max_precision
189
+ value: 1.0
190
+ name: Max Precision
191
+ - type: max_recall
192
+ value: 1.0
193
+ name: Max Recall
194
+ - type: max_ap
195
+ value: 1.0
196
+ name: Max Ap
197
  ---
198
+
199
+ # SentenceTransformer based on cointegrated/rubert-tiny2
200
+
201
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2). It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
202
+
203
+ ## Model Details
204
+
205
+ ### Model Description
206
+ - **Model Type:** Sentence Transformer
207
+ - **Base model:** [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) <!-- at revision dad72b8f77c5eef6995dd3e4691b758ba56b90c3 -->
208
+ - **Maximum Sequence Length:** 2048 tokens
209
+ - **Output Dimensionality:** 312 tokens
210
+ - **Similarity Function:** Cosine Similarity
211
+ <!-- - **Training Dataset:** Unknown -->
212
+ <!-- - **Language:** Unknown -->
213
+ <!-- - **License:** Unknown -->
214
+
215
+ ### Model Sources
216
+
217
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
218
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
219
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
220
+
221
+ ### Full Model Architecture
222
+
223
+ ```
224
+ SentenceTransformer(
225
+ (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
226
+ (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
227
+ (2): Normalize()
228
+ )
229
+ ```
230
+
231
+ ## Usage
232
+
233
+ ### Direct Usage (Sentence Transformers)
234
+
235
+ First install the Sentence Transformers library:
236
+
237
+ ```bash
238
+ pip install -U sentence-transformers
239
+ ```
240
+
241
+ Then you can load this model and run inference.
242
+ ```python
243
+ from sentence_transformers import SentenceTransformer
244
+
245
+ # Download from the 🤗 Hub
246
+ model = SentenceTransformer("sentence_transformers_model_id")
247
+ # Run inference
248
+ sentences = [
249
+ 'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
250
+ 'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
251
+ 'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
252
+ ]
253
+ embeddings = model.encode(sentences)
254
+ print(embeddings.shape)
255
+ # [3, 312]
256
+
257
+ # Get the similarity scores for the embeddings
258
+ similarities = model.similarity(embeddings, embeddings)
259
+ print(similarities.shape)
260
+ # [3, 3]
261
+ ```
262
+
263
+ <!--
264
+ ### Direct Usage (Transformers)
265
+
266
+ <details><summary>Click to see the direct usage in Transformers</summary>
267
+
268
+ </details>
269
+ -->
270
+
271
+ <!--
272
+ ### Downstream Usage (Sentence Transformers)
273
+
274
+ You can finetune this model on your own dataset.
275
+
276
+ <details><summary>Click to expand</summary>
277
+
278
+ </details>
279
+ -->
280
+
281
+ <!--
282
+ ### Out-of-Scope Use
283
+
284
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
285
+ -->
286
+
287
+ ## Evaluation
288
+
289
+ ### Metrics
290
+
291
+ #### Binary Classification
292
+ * Dataset: `cv`
293
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
294
+
295
+ | Metric | Value |
296
+ |:-----------------------------|:--------|
297
+ | cosine_accuracy | 1.0 |
298
+ | cosine_accuracy_threshold | 0.7241 |
299
+ | cosine_f1 | 1.0 |
300
+ | cosine_f1_threshold | 0.7241 |
301
+ | cosine_precision | 1.0 |
302
+ | cosine_recall | 1.0 |
303
+ | cosine_ap | 1.0 |
304
+ | dot_accuracy | 1.0 |
305
+ | dot_accuracy_threshold | 0.7241 |
306
+ | dot_f1 | 1.0 |
307
+ | dot_f1_threshold | 0.7241 |
308
+ | dot_precision | 1.0 |
309
+ | dot_recall | 1.0 |
310
+ | dot_ap | 1.0 |
311
+ | manhattan_accuracy | 1.0 |
312
+ | manhattan_accuracy_threshold | 9.0554 |
313
+ | manhattan_f1 | 1.0 |
314
+ | manhattan_f1_threshold | 9.0554 |
315
+ | manhattan_precision | 1.0 |
316
+ | manhattan_recall | 1.0 |
317
+ | manhattan_ap | 1.0 |
318
+ | euclidean_accuracy | 1.0 |
319
+ | euclidean_accuracy_threshold | 0.6519 |
320
+ | euclidean_f1 | 1.0 |
321
+ | euclidean_f1_threshold | 0.6519 |
322
+ | euclidean_precision | 1.0 |
323
+ | euclidean_recall | 1.0 |
324
+ | euclidean_ap | 1.0 |
325
+ | max_accuracy | 1.0 |
326
+ | max_accuracy_threshold | 9.0554 |
327
+ | max_f1 | 1.0 |
328
+ | max_f1_threshold | 9.0554 |
329
+ | max_precision | 1.0 |
330
+ | max_recall | 1.0 |
331
+ | **max_ap** | **1.0** |
332
+
333
+ <!--
334
+ ## Bias, Risks and Limitations
335
+
336
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
337
+ -->
338
+
339
+ <!--
340
+ ### Recommendations
341
+
342
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
343
+ -->
344
+
345
+ ## Training Details
346
+
347
+ ### Training Dataset
348
+
349
+ #### Unnamed Dataset
350
+
351
+
352
+ * Size: 13,690 training samples
353
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
354
+ * Approximate statistics based on the first 1000 samples:
355
+ | | sentence1 | sentence2 | score |
356
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
357
+ | type | string | string | float |
358
+ | details | <ul><li>min: 14 tokens</li><li>mean: 29.13 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 29.18 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
359
+ * Samples:
360
+ | sentence1 | sentence2 | score |
361
+ |:------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:-----------------|
362
+ | <code>Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в Москве Кардиотренажеры Велотренажеры Spirit Fitness AB900+ Air Bike</code> | <code>Велотренажер IZHIMIO СL 1500 Главная Велотренажеры Бренды</code> | <code>1.0</code> |
363
+ | <code>Эллиптический тренажер Sports Art E835 Главная Эллиптические тренажеры Бренды</code> | <code>Степпер Matrix C7XI в Мо��кве Кардиотренажеры Степперы Matrix C7XI</code> | <code>0.0</code> |
364
+ | <code>Мультистанция Nohrd SlimBeam nan Силовые тренажеры Мультистанции</code> | <code>Эллиптический тренажер Koenigsmann JX-170EF в Москве Кардиотренажеры Эллиптические тренажеры Koenigsmann JX-170EF</code> | <code>0.0</code> |
365
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
366
+ ```json
367
+ {
368
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
369
+ "margin": 0.5,
370
+ "size_average": true
371
+ }
372
+ ```
373
+
374
+ ### Evaluation Dataset
375
+
376
+ #### Unnamed Dataset
377
+
378
+
379
+ * Size: 28 evaluation samples
380
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
381
+ * Approximate statistics based on the first 28 samples:
382
+ | | sentence1 | sentence2 | score |
383
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
384
+ | type | string | string | float |
385
+ | details | <ul><li>min: 15 tokens</li><li>mean: 27.18 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 28.0 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.61</li><li>max: 1.0</li></ul> |
386
+ * Samples:
387
+ | sentence1 | sentence2 | score |
388
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:-----------------|
389
+ | <code>Беговая дорожка Carbon Yukon Беговые дорожки Carbon Carbon Yukon</code> | <code>Беговая дорожка Hasttings LCT80 Беговые дорожки Hasttings Hasttings LCT80</code> | <code>1.0</code> |
390
+ | <code>Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитации Беговые дорожки DFC Беговая дорожка DFC BOSS I T-B1 для реабилитации</code> | <code>Беговая дорожка EVO FITNESS Cosmo 5 Главная Беговые дорожки Бренды</code> | <code>1.0</code> |
391
+ | <code>Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в Москве Силовые тренажеры Грузоблочные Precor C010ES - жим ногами/икроножные</code> | <code>Кроссовер Bronze Gym D-005 Главная Силовые тренажеры Кроссовер Bronze Gym D-005</code> | <code>1.0</code> |
392
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
393
+ ```json
394
+ {
395
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
396
+ "margin": 0.5,
397
+ "size_average": true
398
+ }
399
+ ```
400
+
401
+ ### Training Hyperparameters
402
+ #### Non-Default Hyperparameters
403
+
404
+ - `eval_strategy`: epoch
405
+ - `per_device_train_batch_size`: 32
406
+ - `per_device_eval_batch_size`: 32
407
+ - `num_train_epochs`: 10
408
+ - `warmup_ratio`: 0.1
409
+ - `fp16`: True
410
+
411
+ #### All Hyperparameters
412
+ <details><summary>Click to expand</summary>
413
+
414
+ - `overwrite_output_dir`: False
415
+ - `do_predict`: False
416
+ - `eval_strategy`: epoch
417
+ - `prediction_loss_only`: True
418
+ - `per_device_train_batch_size`: 32
419
+ - `per_device_eval_batch_size`: 32
420
+ - `per_gpu_train_batch_size`: None
421
+ - `per_gpu_eval_batch_size`: None
422
+ - `gradient_accumulation_steps`: 1
423
+ - `eval_accumulation_steps`: None
424
+ - `torch_empty_cache_steps`: None
425
+ - `learning_rate`: 5e-05
426
+ - `weight_decay`: 0.0
427
+ - `adam_beta1`: 0.9
428
+ - `adam_beta2`: 0.999
429
+ - `adam_epsilon`: 1e-08
430
+ - `max_grad_norm`: 1.0
431
+ - `num_train_epochs`: 10
432
+ - `max_steps`: -1
433
+ - `lr_scheduler_type`: linear
434
+ - `lr_scheduler_kwargs`: {}
435
+ - `warmup_ratio`: 0.1
436
+ - `warmup_steps`: 0
437
+ - `log_level`: passive
438
+ - `log_level_replica`: warning
439
+ - `log_on_each_node`: True
440
+ - `logging_nan_inf_filter`: True
441
+ - `save_safetensors`: True
442
+ - `save_on_each_node`: False
443
+ - `save_only_model`: False
444
+ - `restore_callback_states_from_checkpoint`: False
445
+ - `no_cuda`: False
446
+ - `use_cpu`: False
447
+ - `use_mps_device`: False
448
+ - `seed`: 42
449
+ - `data_seed`: None
450
+ - `jit_mode_eval`: False
451
+ - `use_ipex`: False
452
+ - `bf16`: False
453
+ - `fp16`: True
454
+ - `fp16_opt_level`: O1
455
+ - `half_precision_backend`: auto
456
+ - `bf16_full_eval`: False
457
+ - `fp16_full_eval`: False
458
+ - `tf32`: None
459
+ - `local_rank`: 0
460
+ - `ddp_backend`: None
461
+ - `tpu_num_cores`: None
462
+ - `tpu_metrics_debug`: False
463
+ - `debug`: []
464
+ - `dataloader_drop_last`: False
465
+ - `dataloader_num_workers`: 0
466
+ - `dataloader_prefetch_factor`: None
467
+ - `past_index`: -1
468
+ - `disable_tqdm`: False
469
+ - `remove_unused_columns`: True
470
+ - `label_names`: None
471
+ - `load_best_model_at_end`: False
472
+ - `ignore_data_skip`: False
473
+ - `fsdp`: []
474
+ - `fsdp_min_num_params`: 0
475
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
476
+ - `fsdp_transformer_layer_cls_to_wrap`: None
477
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
478
+ - `deepspeed`: None
479
+ - `label_smoothing_factor`: 0.0
480
+ - `optim`: adamw_torch
481
+ - `optim_args`: None
482
+ - `adafactor`: False
483
+ - `group_by_length`: False
484
+ - `length_column_name`: length
485
+ - `ddp_find_unused_parameters`: None
486
+ - `ddp_bucket_cap_mb`: None
487
+ - `ddp_broadcast_buffers`: False
488
+ - `dataloader_pin_memory`: True
489
+ - `dataloader_persistent_workers`: False
490
+ - `skip_memory_metrics`: True
491
+ - `use_legacy_prediction_loop`: False
492
+ - `push_to_hub`: False
493
+ - `resume_from_checkpoint`: None
494
+ - `hub_model_id`: None
495
+ - `hub_strategy`: every_save
496
+ - `hub_private_repo`: False
497
+ - `hub_always_push`: False
498
+ - `gradient_checkpointing`: False
499
+ - `gradient_checkpointing_kwargs`: None
500
+ - `include_inputs_for_metrics`: False
501
+ - `eval_do_concat_batches`: True
502
+ - `fp16_backend`: auto
503
+ - `push_to_hub_model_id`: None
504
+ - `push_to_hub_organization`: None
505
+ - `mp_parameters`:
506
+ - `auto_find_batch_size`: False
507
+ - `full_determinism`: False
508
+ - `torchdynamo`: None
509
+ - `ray_scope`: last
510
+ - `ddp_timeout`: 1800
511
+ - `torch_compile`: False
512
+ - `torch_compile_backend`: None
513
+ - `torch_compile_mode`: None
514
+ - `dispatch_batches`: None
515
+ - `split_batches`: None
516
+ - `include_tokens_per_second`: False
517
+ - `include_num_input_tokens_seen`: False
518
+ - `neftune_noise_alpha`: None
519
+ - `optim_target_modules`: None
520
+ - `batch_eval_metrics`: False
521
+ - `eval_on_start`: False
522
+ - `eval_use_gather_object`: False
523
+ - `batch_sampler`: batch_sampler
524
+ - `multi_dataset_batch_sampler`: proportional
525
+
526
+ </details>
527
+
528
+ ### Training Logs
529
+ | Epoch | Step | Training Loss | loss | cv_max_ap |
530
+ |:------:|:----:|:-------------:|:------:|:---------:|
531
+ | 0 | 0 | - | - | 0.7655 |
532
+ | 1.0 | 428 | - | 0.0056 | 1.0 |
533
+ | 1.1682 | 500 | 0.0078 | - | - |
534
+ | 2.0 | 856 | - | 0.0015 | 1.0 |
535
+ | 2.3364 | 1000 | 0.0019 | - | - |
536
+ | 3.0 | 1284 | - | 0.0011 | 1.0 |
537
+ | 3.5047 | 1500 | 0.0013 | - | - |
538
+ | 4.0 | 1712 | - | 0.0007 | 1.0 |
539
+ | 4.6729 | 2000 | 0.001 | - | - |
540
+ | 5.0 | 2140 | - | 0.0004 | 1.0 |
541
+ | 5.8411 | 2500 | 0.0008 | - | - |
542
+ | 6.0 | 2568 | - | 0.0002 | 1.0 |
543
+ | 7.0 | 2996 | - | 0.0002 | 1.0 |
544
+ | 7.0093 | 3000 | 0.0007 | - | - |
545
+ | 8.0 | 3424 | - | 0.0001 | 1.0 |
546
+ | 8.1776 | 3500 | 0.0006 | - | - |
547
+ | 9.0 | 3852 | - | 0.0001 | 1.0 |
548
+ | 9.3458 | 4000 | 0.0005 | - | - |
549
+ | 10.0 | 4280 | - | 0.0001 | 1.0 |
550
+
551
+
552
+ ### Framework Versions
553
+ - Python: 3.11.8
554
+ - Sentence Transformers: 3.1.0
555
+ - Transformers: 4.44.2
556
+ - PyTorch: 2.4.1+cu118
557
+ - Accelerate: 0.34.2
558
+ - Datasets: 3.0.0
559
+ - Tokenizers: 0.19.1
560
+
561
+ ## Citation
562
+
563
+ ### BibTeX
564
+
565
+ #### Sentence Transformers
566
+ ```bibtex
567
+ @inproceedings{reimers-2019-sentence-bert,
568
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
569
+ author = "Reimers, Nils and Gurevych, Iryna",
570
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
571
+ month = "11",
572
+ year = "2019",
573
+ publisher = "Association for Computational Linguistics",
574
+ url = "https://arxiv.org/abs/1908.10084",
575
+ }
576
+ ```
577
+
578
+ #### ContrastiveLoss
579
+ ```bibtex
580
+ @inproceedings{hadsell2006dimensionality,
581
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
582
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
583
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
584
+ year={2006},
585
+ volume={2},
586
+ number={},
587
+ pages={1735-1742},
588
+ doi={10.1109/CVPR.2006.100}
589
+ }
590
+ ```
591
+
592
+ <!--
593
+ ## Glossary
594
+
595
+ *Clearly define terms in order to be accessible across audiences.*
596
+ -->
597
+
598
+ <!--
599
+ ## Model Card Authors
600
+
601
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
602
+ -->
603
+
604
+ <!--
605
+ ## Model Card Contact
606
+
607
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
608
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cointegrated/rubert-tiny2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "emb_size": 312,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 312,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 600,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 2048,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 3,
20
+ "pad_token_id": 0,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.44.2",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 83828
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2144e003080b94faa1a4d12c252bc4ef9ce8a0ef9ee5aa0703fe5f1802087918
3
+ size 116781184
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 2048,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 2048,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c254543bedb8797d16298576c9ddb0d60c9a824f6facea1dcf4e174f6bacd80
3
+ size 5496
vocab.txt ADDED
The diff for this file is too large to render. See raw diff