File size: 12,646 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

import importlib.resources
import string
from abc import ABC, abstractmethod
from typing import ClassVar, Dict, List, Optional, Tuple, Union

from pydantic import BaseModel, Field
from transformers import PretrainedConfig
from typing_extensions import Literal

import mergekit._data.architectures


class WeightInfo(BaseModel, frozen=True):
    """Information about an individual weight tensor in a model.

    Attributes:
        name (str):
            The name of the tensor representing the weight.
        is_embed (bool):
            Indicates whether the weight is for an embedding or language model head.
        input_space (Optional[str]):
            The name of the input space associated with the weight, if applicable.
        output_space (Optional[str]):
            The name of the output space associated with the weight, if applicable.
        optional (bool):
            Indicates whether the weight can be omitted from a model.
        aliases (Optional[List[str]]):
            List of alternative names for the weight, if applicable.
    """

    name: str
    is_embed: bool = False
    input_space: Optional[str] = None
    output_space: Optional[str] = None
    optional: bool = False
    aliases: Optional[List[str]] = None


class ProceduralSpaceInfo(BaseModel, frozen=True):
    """Defines a procedural space computed from one or more other spaces.

    Currently only supports residual connections.

    Attributes:
        name (str): The name of the space defined.
        type (str): The type of procedural space.
        inputs (List[str]): List of names of spaces used to define this space."""

    name: str
    type: Literal["residual"]
    inputs: List[str]


class ArchitectureInfo(ABC):
    @abstractmethod
    def name(self) -> str:
        """Return the name of the architecture."""
        ...

    @abstractmethod
    def pre_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        """Return a list of all weights preceding the first layer."""
        ...

    @abstractmethod
    def post_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        """Return a list of all weights following the final layer."""
        ...

    @abstractmethod
    def layer_weights(
        self, index: int, config: PretrainedConfig
    ) -> Optional[List[WeightInfo]]:
        """Return a list of all weights associated with a given layer."""
        ...

    @abstractmethod
    def sliceable(self) -> bool:
        """
        Return True if the layers of this architecture can be meaningfully sliced.
        """
        ...

    def num_layers_config_key(self) -> str:
        """Key in config that represents number of layers"""
        return "num_hidden_layers"

    def num_layers(self, config: PretrainedConfig) -> int:
        """Return the number of layers in a model."""
        return getattr(config, self.num_layers_config_key())

    def all_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        """Return all weights associated with a model."""
        num_layers = self.num_layers(config)
        res = list(self.pre_weights(config))
        for layer_idx in range(num_layers):
            res.extend(self.layer_weights(layer_idx, config))
        res.extend(self.post_weights(config))
        return res

    def procedural_spaces(self, config: PretrainedConfig) -> List[ProceduralSpaceInfo]:
        """Return a list of all procedurally defined spaces in a model."""
        return []

    def has_defined_spaces(self) -> bool:
        """
        Return True if this architecture defines space information needed for
        matching-based merge methods.
        """
        return False


class ConfiguredArchitectureInfo(BaseModel, frozen=True, arbitrary_types_allowed=True):
    info: ArchitectureInfo
    config: PretrainedConfig

    def name(self) -> str:
        return self.info.name()

    def num_layers(self) -> int:
        return self.info.num_layers(self.config)

    def pre_weights(self) -> List[WeightInfo]:
        return self.info.pre_weights(self.config)

    def post_weights(self) -> List[WeightInfo]:
        return self.info.post_weights(self.config)

    def layer_weights(self, index: int) -> List[WeightInfo]:
        return self.info.layer_weights(index, self.config)

    def procedural_spaces(self) -> List[ProceduralSpaceInfo]:
        return self.info.procedural_spaces(self.config)

    def all_weights(self) -> List[WeightInfo]:
        return self.info.all_weights(self.config)


class JSONLayerTemplates(BaseModel, frozen=True):
    weights: List[WeightInfo]
    procedural_spaces: Optional[List[ProceduralSpaceInfo]] = None


class JSONArchitectureDefinition(BaseModel, frozen=True):
    expected_model_type: str = Field(alias="model_type")
    architectures: List[str]
    pre_weights: List[WeightInfo]
    layer_templates: JSONLayerTemplates
    post_weights: List[WeightInfo]
    procedural_spaces: Optional[List[ProceduralSpaceInfo]] = None
    num_layers_config_key: Optional[str] = None


class TemplateWithArithmetic(string.Template):
    idpattern = r"(?a:[_a-z][_a-z0-9]*([+-]1)?)"


def _template_substitution(
    template: str, num_layers: int, layer_idx: Optional[int] = None
) -> str:
    if "{" not in template:
        return template

    substitutions = {
        "num_layers": num_layers,
        "num_layers+1": num_layers + 1,
        "num_layers-1": num_layers - 1,
    }

    if layer_idx is not None:
        substitutions.update(
            {
                "layer_index": layer_idx,
                "layer_index+1": layer_idx + 1,
                "layer_index-1": layer_idx - 1,
            }
        )

    return TemplateWithArithmetic(template).substitute(substitutions)


class JsonArchitectureInfo(ArchitectureInfo, BaseModel, frozen=True):
    definition: JSONArchitectureDefinition

    def _substitute(
        self,
        item: Union[WeightInfo, ProceduralSpaceInfo],
        config: PretrainedConfig,
        layer_idx: Optional[int] = None,
    ) -> Union[WeightInfo, ProceduralSpaceInfo]:
        num_layers = self.num_layers(config)

        obj_dict = item.model_dump(mode="json", exclude_unset=True)
        for key in obj_dict:
            if isinstance(obj_dict[key], str):
                obj_dict[key] = _template_substitution(
                    obj_dict[key], num_layers, layer_idx
                )
            elif isinstance(obj_dict[key], list):
                obj_dict[key] = [
                    (
                        _template_substitution(s, num_layers, layer_idx)
                        if isinstance(s, str)
                        else s
                    )
                    for s in obj_dict[key]
                ]
        return type(item).model_validate(obj_dict)

    def name(self) -> str:
        return self.definition.expected_model_type

    def pre_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        return [
            self._substitute(wi, config=config) for wi in self.definition.pre_weights
        ]

    def layer_weights(
        self, index: int, config: PretrainedConfig
    ) -> Optional[List[WeightInfo]]:
        return [
            self._substitute(wi, config=config, layer_idx=index)
            for wi in self.definition.layer_templates.weights
        ]

    def post_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        return [
            self._substitute(wi, config=config) for wi in self.definition.post_weights
        ]

    def sliceable(self) -> bool:
        return True

    def procedural_spaces(self, config: PretrainedConfig) -> List[ProceduralSpaceInfo]:
        res = []
        for s in self.definition.procedural_spaces or []:
            res.append(self._substitute(s, config=config))
        for idx in range(self.num_layers(config)):
            for s in self.definition.layer_templates.procedural_spaces or []:
                res.append(self._substitute(s, config=config, layer_idx=idx))
        return res

    def has_defined_spaces(self) -> bool:
        if (
            self.definition.procedural_spaces
            or self.definition.layer_templates.procedural_spaces
        ):
            return True
        for wi in (
            self.definition.layer_templates.weights
            + self.definition.pre_weights
            + self.definition.post_weights
        ):
            if wi.input_space or wi.output_space:
                return True
        return False

    def num_layers_config_key(self) -> str:
        return self.definition.num_layers_config_key


class MixtralTensorNames(ArchitectureInfo, BaseModel):
    ARCHITECTURE_NAME: ClassVar[str] = "MixtralForCausalLM"
    num_local_experts: int

    def name(self) -> str:
        return "mixtral"

    @classmethod
    def from_config(cls, config: PretrainedConfig):
        return MixtralTensorNames(num_local_experts=config.num_local_experts)

    def pre_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        return MISTRAL_INFO.pre_weights(config)

    def post_weights(self, config: PretrainedConfig) -> List[WeightInfo]:
        return MISTRAL_INFO.post_weights(config)

    def num_layers_config_key(self) -> str:
        return MISTRAL_INFO.num_layers_config_key()

    def layer_weights(
        self, index: int, config: PretrainedConfig
    ) -> Optional[List[WeightInfo]]:
        num_experts = self.num_local_experts
        prefix = f"model.layers.{index}"
        tensor_names = []
        for expert_idx in range(num_experts):
            for param in ("w1", "w2", "w3"):
                tensor_names.append(
                    prefix + f".block_sparse_moe.experts.{expert_idx}.{param}.weight"
                )
        tensor_names.append(prefix + ".block_sparse_moe.gate.weight")
        res = []
        for name in tensor_names:
            res.append(WeightInfo(name=name))
        for weight_info in MISTRAL_INFO.layer_weights(index, config):
            if ".mlp." in weight_info.name:
                continue
            res.append(weight_info)
        return res

    def sliceable(self) -> bool:
        return True

    def has_defined_spaces(self) -> bool:
        return False


def _load_json_arch(name: str) -> JsonArchitectureInfo:
    text = importlib.resources.read_text(mergekit._data.architectures, name)
    return JsonArchitectureInfo(
        definition=JSONArchitectureDefinition.model_validate_json(text)
    )


def _load_all_architectures() -> (
    Tuple[List[JsonArchitectureInfo], Dict[str, List[JsonArchitectureInfo]]]
):
    architectures: List[JsonArchitectureInfo] = []
    for f in importlib.resources.contents(mergekit._data.architectures):
        if f.lower().endswith(".json"):
            architectures.append(_load_json_arch(f))

    name_to_arch: Dict[str, List[JsonArchitectureInfo]] = {}
    for arch_info in architectures:
        for name in arch_info.definition.architectures:
            name_to_arch[name] = name_to_arch.get(name, [])
            name_to_arch[name].append(arch_info)
    return architectures, name_to_arch


JSON_ARCHITECTURES, NAME_TO_ARCH = _load_all_architectures()
MISTRAL_INFO = _load_json_arch("mistral.json")


def get_architecture_info(config: PretrainedConfig) -> ArchitectureInfo:
    if len(config.architectures) != 1:
        raise RuntimeError("More than one architecture in config?")

    arch_name = config.architectures[0]

    if arch_name == MixtralTensorNames.ARCHITECTURE_NAME:
        return MixtralTensorNames.from_config(config)

    if arch_name not in NAME_TO_ARCH:
        raise RuntimeError(f"Unsupported architecture {arch_name}")

    candidates = list(NAME_TO_ARCH[arch_name])
    if len(candidates) == 1:
        return candidates[0]

    for c in candidates:
        if c.definition.expected_model_type == config.model_type:
            return c

    raise RuntimeError(
        f"Unsupported model_type {config.model_type} for architecture {arch_name}"
    )