File size: 4,985 Bytes
a164e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.

import json
import logging
import os
from typing import Dict

import safetensors
import torch


class TensorWriter:
    out_path: str
    max_shard_size: int
    shards_written: int
    weight_map = Dict[str, str]
    current_shard: Dict[str, torch.Tensor]
    current_shard_size: int
    total_size: int
    safe_serialization: bool

    def __init__(
        self,
        out_path: str,
        max_shard_size: int = 1000 * 1000 * 1000 * 5,
        safe_serialization: bool = True,
    ) -> None:
        os.makedirs(out_path, exist_ok=True)

        self.out_path = out_path
        self.max_shard_size = max_shard_size
        self.safe_serialization = safe_serialization
        self.shards_written = 0
        self.weight_map = {}
        self.current_shard = {}
        self.current_shard_size = 0
        self.total_size = 0

    def save_tensor(self, name: str, tensor: torch.Tensor, clone: bool = False):
        tensor_size = tensor.view(-1).shape[0]
        if (
            self.current_shard
            and self.current_shard_size + tensor_size > self.max_shard_size
        ):
            self.flush_current_shard()

        if clone:
            tensor = tensor.clone()

        self.current_shard[name] = tensor
        self.total_size += tensor.numel() * tensor.element_size()
        self.current_shard_size += tensor_size

    def flush_current_shard(self):
        if not self.current_shard:
            return

        logging.info(f"Writing shard #{self.shards_written+1} to disk")

        prefix, extension = self._get_name_components()
        shard_name = f"{prefix}-{self.shards_written+1}.{extension}"
        for key in self.current_shard:
            self.weight_map[key] = shard_name

        shard_path = os.path.join(self.out_path, shard_name)
        if self.safe_serialization:
            self._save_st(shard_path)
        else:
            torch.save(self.current_shard, shard_path)

        self.current_shard = {}
        self.current_shard_size = 0
        self.shards_written = self.shards_written + 1

    def finalize(self):
        self.flush_current_shard()

        logging.info("Finalizing shard names")

        prefix, extension = self._get_name_components()

        # standardize shard names to hf format
        total_shards = self.shards_written
        name_remap = {}
        for idx in range(total_shards):
            name_remap[
                f"{prefix}-{idx+1}.{extension}"
            ] = f"{prefix}-{idx+1:05d}-of-{total_shards:05d}.{extension}"

        for old_name, new_name in name_remap.items():
            os.rename(
                os.path.join(self.out_path, old_name),
                os.path.join(self.out_path, new_name),
            )

        for key in self.weight_map:
            self.weight_map[key] = name_remap[self.weight_map[key]]

        with open(
            os.path.join(self.out_path, f"{prefix}.{extension}.index.json"),
            "w",
            encoding="utf-8",
        ) as file:
            json.dump(
                {
                    "metadata": {
                        "mergekit_version": "0.0.4.2",
                        "total_size": self.total_size,
                    },
                    "weight_map": self.weight_map,
                },
                file,
            )

    def _get_name_components(self):
        if self.safe_serialization:
            return "model", "safetensors"
        return "pytorch_model", "bin"

    def _save_st(self, shard_path: str):
        def _do_save():
            safetensors.torch.save_file(
                self.current_shard,
                shard_path,
                metadata={"format": "pt"},
            )

        try:
            _do_save()
        except RuntimeError as e:
            if (
                len(e.args) > 0
                and isinstance(e.args[0], str)
                and "share memory" in e.args[0]
            ):
                logging.warning(
                    "Your model has duplicated tensors but the --clone-tensors "
                    "flag is not set."
                )
                self.current_shard = {
                    key: self.current_shard[key].clone() for key in self.current_shard
                }
                _do_save()
            else:
                raise