|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import binascii |
|
import logging |
|
import os |
|
import os.path |
|
from typing import ( |
|
Any, |
|
Callable, |
|
Dict, |
|
Generic, |
|
Iterator, |
|
List, |
|
Mapping, |
|
Optional, |
|
Tuple, |
|
Union, |
|
get_args, |
|
) |
|
|
|
import huggingface_hub |
|
import immutables |
|
import peft |
|
import torch |
|
import transformers |
|
from pydantic import BaseModel, model_validator |
|
from pydantic_core import core_schema |
|
from transformers import AutoConfig, PretrainedConfig |
|
from typing_extensions import TypeVar |
|
|
|
from mergekit.io import LazyTensorLoader, ShardedTensorIndex |
|
|
|
|
|
class ModelPath(BaseModel, frozen=True): |
|
path: str |
|
revision: Optional[str] = None |
|
|
|
@model_validator(mode="before") |
|
def validate_string(cls, value): |
|
if isinstance(value, str): |
|
at_ct = value.count("@") |
|
if at_ct > 1: |
|
raise RuntimeError(f"Invalid model path - multiple @: {value}") |
|
elif at_ct == 1: |
|
path, rev = value.split("@") |
|
return {"path": path, "revision": rev} |
|
else: |
|
return {"path": value} |
|
return value |
|
|
|
def __str__(self): |
|
if self.revision: |
|
return f"{self.path}@{self.revision}" |
|
return self.path |
|
|
|
def _unique_id(self): |
|
return ( |
|
os.path.basename(self.path) |
|
+ "_" |
|
+ str(binascii.crc32(self.__str__().encode())) |
|
) |
|
|
|
|
|
class ModelReference(BaseModel, frozen=True): |
|
"""A reference to a language model. |
|
|
|
Can be a hf hub path (username/repo), or local. Optionally includes a LoRA.""" |
|
|
|
model: ModelPath |
|
lora: Optional[ModelPath] = None |
|
|
|
def merged( |
|
self, cache_dir: Optional[str] = None, trust_remote_code: bool = False |
|
) -> "ModelReference": |
|
"""Merge the LoRA if applicable and return a reference to the result.""" |
|
if not self.lora: |
|
return self |
|
|
|
if not cache_dir: |
|
raise RuntimeError("Need to specify cache dir to merge adapters") |
|
|
|
out_path = os.path.join( |
|
cache_dir, |
|
self.model._unique_id() + "_" + self.lora._unique_id(), |
|
) |
|
|
|
if not os.path.exists(out_path): |
|
os.makedirs(out_path, exist_ok=True) |
|
logging.info(f"Loading {self.model} for merge...") |
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
self.model.path, |
|
revision=self.model.revision, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=trust_remote_code, |
|
) |
|
model = peft.PeftModel.from_pretrained( |
|
model, self.lora.path, revision=self.lora.revision, is_trainable=False |
|
) |
|
logging.info(f"Merging {self.lora} into {self.model}") |
|
model = model.merge_and_unload() |
|
model.save_pretrained(out_path, safe_serialization=True) |
|
del model |
|
|
|
return ModelReference(model=out_path) |
|
|
|
def config(self, trust_remote_code: bool = False) -> PretrainedConfig: |
|
return AutoConfig.from_pretrained( |
|
self.model.path, |
|
revision=self.model.revision, |
|
trust_remote_code=trust_remote_code, |
|
) |
|
|
|
def tensor_index(self, cache_dir: Optional[str] = None) -> ShardedTensorIndex: |
|
assert self.lora is None |
|
|
|
path = self.model.path |
|
if not os.path.exists(path): |
|
has_safetensors = any( |
|
fn.lower().endswith(".safetensors") |
|
for fn in huggingface_hub.list_repo_files( |
|
path, repo_type="model", revision=self.model.revision |
|
) |
|
) |
|
patterns = ["tokenizer.model", "*.json"] |
|
if has_safetensors: |
|
patterns.append("*.safetensors") |
|
else: |
|
patterns.append("*.bin") |
|
|
|
path = huggingface_hub.snapshot_download( |
|
path, |
|
revision=self.model.revision, |
|
cache_dir=cache_dir, |
|
allow_patterns=patterns, |
|
) |
|
|
|
return ShardedTensorIndex.from_disk(path) |
|
|
|
def lazy_loader( |
|
self, cache_dir: Optional[str] = None, lazy_unpickle: bool = True |
|
) -> LazyTensorLoader: |
|
return LazyTensorLoader( |
|
self.tensor_index(cache_dir), |
|
lazy_unpickle=lazy_unpickle, |
|
) |
|
|
|
@model_validator(mode="before") |
|
def validate_string(cls, value): |
|
if isinstance(value, str): |
|
chunks = value.split("+") |
|
if len(chunks) == 1: |
|
return {"model": value} |
|
elif len(chunks) == 2: |
|
return {"model": chunks[0], "lora": chunks[1]} |
|
raise RuntimeError(f"Can't parse {value}") |
|
return value |
|
|
|
@classmethod |
|
def parse(cls, value: str) -> "ModelReference": |
|
"""Parse a ModelReference. Format: '<MODEL_PATH>(+<LORA_PATH>)?'""" |
|
return ModelReference.model_validate(value) |
|
|
|
def __str__(self) -> str: |
|
if self.lora: |
|
return f"{str(self.model)}+{str(self.lora)}" |
|
return str(self.model) |
|
|
|
|
|
def dtype_from_name(name: Optional[str]) -> torch.dtype: |
|
if name.startswith("torch."): |
|
name = name[len("torch.") :] |
|
|
|
if name == "bfloat16": |
|
return torch.bfloat16 |
|
elif name == "float16": |
|
return torch.float16 |
|
elif name == "float32": |
|
return torch.float32 |
|
raise RuntimeError(f'Unimplemented dtype "{name}"') |
|
|
|
|
|
def rectify_embed_sizes(param_name: str, tensors: List[torch.Tensor]): |
|
|
|
if ("lm_head" in param_name or "embed_tokens" in param_name) and all( |
|
len(t.shape) == 2 for t in tensors |
|
): |
|
|
|
|
|
if take_common_submatrix(tensors): |
|
logging.warning( |
|
f"Using common submatrix of size {tensors[0].shape} for {param_name}" |
|
) |
|
|
|
|
|
def take_common_submatrix(tensors: List[torch.Tensor]) -> bool: |
|
min_size = [None, None] |
|
for t in tensors: |
|
for idx in range(2): |
|
if min_size[idx] is None or t.shape[idx] < min_size[idx]: |
|
min_size[idx] = t.shape[idx] |
|
|
|
if not all(t.shape == torch.Size(min_size) for t in tensors): |
|
for idx in range(len(tensors)): |
|
tensors[idx] = tensors[idx][: min_size[0], : min_size[1]] |
|
return True |
|
return False |
|
|
|
|
|
def parse_kmb(value: Union[str, int]) -> int: |
|
if isinstance(value, int): |
|
return value |
|
elif value.isnumeric(): |
|
return int(value) |
|
elif value[-1].lower() == "k": |
|
return int(value[:-1]) * 1000 |
|
elif value[-1].lower() == "m": |
|
return int(value[:-1]) * 1000 * 1000 |
|
elif value[-1].lower() == "b": |
|
return int(value[:-1]) * 1000 * 1000 * 1000 |
|
else: |
|
raise ValueError(value) |
|
|
|
|
|
T_K = TypeVar("T_K") |
|
T_V = TypeVar("T_V") |
|
|
|
|
|
class ImmutableMap(Generic[T_K, T_V]): |
|
data: immutables.Map[T_K, T_V] |
|
|
|
def __init__(self, data: Mapping[T_K, T_V]): |
|
self.data = data |
|
|
|
@classmethod |
|
def __get_pydantic_core_schema__( |
|
cls, source: Any, handler: Callable[[Any], core_schema.CoreSchema] |
|
) -> core_schema.CoreSchema: |
|
instance_schema = core_schema.is_instance_schema(cls) |
|
|
|
args = get_args(source) |
|
if args: |
|
dict_schema = handler(Dict[args[0], args[1]]) |
|
else: |
|
dict_schema = handler(Dict) |
|
|
|
non_instance_schema = core_schema.with_info_after_validator_function( |
|
lambda value, _info: immutables.Map(value), dict_schema |
|
) |
|
return core_schema.union_schema([instance_schema, non_instance_schema]) |
|
|
|
def __iter__(self): |
|
return self.data.__iter__() |
|
|
|
def __getitem__(self, key: T_K) -> T_V: |
|
return self.data[key] |
|
|
|
def __len__(self) -> int: |
|
return len(self.data) |
|
|
|
def keys(self) -> Iterator[T_K]: |
|
return self.data.keys() |
|
|
|
def items(self) -> Iterator[Tuple[T_K, T_V]]: |
|
return self.data.items() |
|
|
|
def values(self) -> Iterator[T_V]: |
|
return self.data.values() |
|
|