Shaleen123's picture
Upload folder using huggingface_hub
a164e13 verified
# Copyright (C) 2024 Charles O. Goddard
#
# This software is free software: you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This software is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see http://www.gnu.org/licenses/.
from typing import Any, Dict, List, Optional
import torch
from mergekit.architecture import WeightInfo
from mergekit.common import ImmutableMap, ModelReference, rectify_embed_sizes
from mergekit.graph import Task
from mergekit.io.tasks import GatherTensors
from mergekit.merge_methods.base import ConfigParameterDef, MergeMethod
class ModelStockMergeTask(Task[torch.Tensor]):
gather_tensors: GatherTensors
base_model: ModelReference
parameter_name: str
filter_wise: bool = False
def uses_accelerator(self) -> bool:
return True
def arguments(self) -> Dict[str, Task]:
return {"tensors": self.gather_tensors}
def execute(self, tensors: Dict[ModelReference, torch.Tensor]) -> torch.Tensor:
if len(tensors) == 1 and self.base_model in tensors:
return tensors[self.base_model]
if len(tensors) < 3:
raise ValueError(
"ModelStockMerge requires at least 3 models (base plus two+ others)"
)
w_0, ws = self.get_rectified_weights(tensors)
out_shape = w_0.shape
if self.filter_wise:
if w_0.dim() == 1:
# bias (or other single-vector) parameters should be treated as row vectors
w_0 = w_0.unsqueeze(0)
ws = [w.unsqueeze(0) for w in ws]
else:
w_0 = w_0.view(-1)
ws = [w.view(-1) for w in ws]
offsets = [w - w_0 for w in ws]
# now there is a question of how to come up with a value for theta.
# in the two-vector case, we can get an exact angle between the two vectors
# but the paper doesn't explicitly say what to do in the multi-vector case -
# they keep using a singular theta value and don't elaborate on how to
# calculate it. i'm going to assume an average of pairwise angles for now? i guess?
cos_thetas = []
for i, w_0_offset in enumerate(offsets):
for j in range(i + 1, len(offsets)):
w_1_offset = offsets[j]
norm_product = torch.norm(w_0_offset, dim=-1) * torch.norm(
w_1_offset, dim=-1
)
cos_theta = (
(w_0_offset * w_1_offset).sum(dim=-1) / norm_product.clamp(min=1e-6)
).clamp(-1, 1)
cos_thetas.append(cos_theta)
cos_theta = torch.stack(cos_thetas).mean(dim=0).unsqueeze(-1)
N = len(ws)
t = (N * cos_theta) / (1 + (N - 1) * cos_theta)
w_avg = sum(ws) / len(ws)
w_h = t * w_avg + (1 - t) * w_0
return w_h.reshape(out_shape)
def get_rectified_weights(self, tensors: Dict[ModelReference, torch.Tensor]):
if self.base_model not in tensors:
raise ValueError("Base model tensor not found")
all_weights = [tensors[self.base_model]] + [
tensors[k] for k in tensors if k != self.base_model
]
rectify_embed_sizes(self.parameter_name, all_weights)
w_0 = all_weights[0]
ws = all_weights[1:]
return w_0, ws
class ModelStockMerge(MergeMethod):
def parameters(self) -> List[ConfigParameterDef]:
return [
ConfigParameterDef(name="filter_wise", required=False, default_value=False)
]
def make_task(
self,
*,
output_weight: WeightInfo,
tensors: GatherTensors,
base_model: Optional[ModelReference],
parameters: ImmutableMap[str, Any],
**_kwargs,
) -> Task:
return ModelStockMergeTask(
gather_tensors=tensors,
base_model=base_model,
parameter_name=output_weight.name,
filter_wise=parameters["filter_wise"],
)