phi-2-merge / tests /test_sparsify.py
Shaleen123's picture
Upload folder using huggingface_hub
a164e13 verified
import pytest
import torch
from mergekit.sparsify import SparsificationMethod, sparsify
@pytest.fixture
def sample_tensor():
res = torch.randn(128, 64)
res[res == 0] = 7 # very low chance, but hey!
return res
class TestMagnitude:
def test_full_density(self, sample_tensor):
assert torch.equal(
sparsify(sample_tensor, density=1, method=SparsificationMethod.magnitude),
sample_tensor,
)
def test_zero_density(self, sample_tensor):
with pytest.raises(AssertionError):
sparsify(sample_tensor, density=0, method=SparsificationMethod.magnitude)
def test_partial_density(self, sample_tensor):
result = sparsify(
sample_tensor, density=0.5, method=SparsificationMethod.magnitude
)
assert torch.count_nonzero(result) == sample_tensor.view(-1).shape[0] // 2
class TestBernoulli:
NUM_ITERATIONS = 1000
def test_bernoulli_with_rescale(self, sample_tensor):
ref_abs_sum = sample_tensor.abs().sum()
avg_abs_sum = torch.zeros_like(ref_abs_sum)
for _ in range(TestBernoulli.NUM_ITERATIONS):
rescaled = sparsify(
sample_tensor, density=0.5, method=SparsificationMethod.rescaled_random
)
avg_abs_sum += rescaled.abs().sum()
avg_abs_sum /= TestBernoulli.NUM_ITERATIONS
assert torch.isclose(avg_abs_sum, ref_abs_sum, rtol=0.01)
def test_bernoulli_without_rescale(self, sample_tensor):
result = sparsify(
sample_tensor, density=0.5, method=SparsificationMethod.random
)
assert 0 < torch.count_nonzero(result) <= sample_tensor.view(-1).shape[0]
def test_cpu_dtypes(self, sample_tensor):
for dt in (torch.float16, torch.bfloat16, torch.float32):
sparsify(
tensor=sample_tensor.to(dtype=dt).cpu(),
density=0.5,
method=SparsificationMethod.rescaled_random,
)