--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/paraphrase-mpnet-base-v2 metrics: - accuracy widget: - text: What is the process for exchanging sneakers? - text: Do you offer a satisfaction guarantee for sneakers purchased with a store promotional code? - text: cookie boxes with dividers - text: What is the optimal brewing time for green tea to ensure the highest health benefits? - text: What information might be shared with third parties, and in what situations would this occur? pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.84 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | order tracking | | | general faq | | | product policy | | | product discoverability | | | product faq | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.84 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud_updated") # Run inference preds = model("cookie boxes with dividers") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 11.9760 | 28 | | Label | Training Sample Count | |:------------------------|:----------------------| | general faq | 24 | | order tracking | 34 | | product discoverability | 50 | | product faq | 50 | | product policy | 50 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 0.2048 | - | | 0.0235 | 50 | 0.2874 | - | | 0.0470 | 100 | 0.126 | - | | 0.0705 | 150 | 0.0388 | - | | 0.0940 | 200 | 0.0786 | - | | 0.1175 | 250 | 0.0049 | - | | 0.1410 | 300 | 0.0048 | - | | 0.1646 | 350 | 0.0018 | - | | 0.1881 | 400 | 0.0011 | - | | 0.2116 | 450 | 0.0004 | - | | 0.2351 | 500 | 0.0006 | - | | 0.2586 | 550 | 0.0005 | - | | 0.2821 | 600 | 0.0012 | - | | 0.3056 | 650 | 0.0004 | - | | 0.3291 | 700 | 0.0003 | - | | 0.3526 | 750 | 0.0002 | - | | 0.3761 | 800 | 0.0002 | - | | 0.3996 | 850 | 0.0002 | - | | 0.4231 | 900 | 0.0002 | - | | 0.4466 | 950 | 0.0008 | - | | 0.4701 | 1000 | 0.0002 | - | | 0.4937 | 1050 | 0.0003 | - | | 0.5172 | 1100 | 0.0001 | - | | 0.5407 | 1150 | 0.0002 | - | | 0.5642 | 1200 | 0.0001 | - | | 0.5877 | 1250 | 0.0001 | - | | 0.6112 | 1300 | 0.0001 | - | | 0.6347 | 1350 | 0.0004 | - | | 0.6582 | 1400 | 0.0002 | - | | 0.6817 | 1450 | 0.0001 | - | | 0.7052 | 1500 | 0.0002 | - | | 0.7287 | 1550 | 0.0001 | - | | 0.7522 | 1600 | 0.0001 | - | | 0.7757 | 1650 | 0.0001 | - | | 0.7992 | 1700 | 0.0001 | - | | 0.8228 | 1750 | 0.0001 | - | | 0.8463 | 1800 | 0.0001 | - | | 0.8698 | 1850 | 0.0001 | - | | 0.8933 | 1900 | 0.0001 | - | | 0.9168 | 1950 | 0.0001 | - | | 0.9403 | 2000 | 0.0001 | - | | 0.9638 | 2050 | 0.0001 | - | | 0.9873 | 2100 | 0.0002 | - | | 1.0108 | 2150 | 0.0001 | - | | 1.0343 | 2200 | 0.0001 | - | | 1.0578 | 2250 | 0.0001 | - | | 1.0813 | 2300 | 0.0001 | - | | 1.1048 | 2350 | 0.0001 | - | | 1.1283 | 2400 | 0.0 | - | | 1.1519 | 2450 | 0.0001 | - | | 1.1754 | 2500 | 0.0 | - | | 1.1989 | 2550 | 0.0001 | - | | 1.2224 | 2600 | 0.0007 | - | | 1.2459 | 2650 | 0.0001 | - | | 1.2694 | 2700 | 0.0001 | - | | 1.2929 | 2750 | 0.0001 | - | | 1.3164 | 2800 | 0.0001 | - | | 1.3399 | 2850 | 0.0001 | - | | 1.3634 | 2900 | 0.0001 | - | | 1.3869 | 2950 | 0.0001 | - | | 1.4104 | 3000 | 0.0001 | - | | 1.4339 | 3050 | 0.0001 | - | | 1.4575 | 3100 | 0.0001 | - | | 1.4810 | 3150 | 0.0001 | - | | 1.5045 | 3200 | 0.0001 | - | | 1.5280 | 3250 | 0.0001 | - | | 1.5515 | 3300 | 0.0001 | - | | 1.5750 | 3350 | 0.0001 | - | | 1.5985 | 3400 | 0.0001 | - | | 1.6220 | 3450 | 0.0001 | - | | 1.6455 | 3500 | 0.0001 | - | | 1.6690 | 3550 | 0.0001 | - | | 1.6925 | 3600 | 0.0001 | - | | 1.7160 | 3650 | 0.0 | - | | 1.7395 | 3700 | 0.0001 | - | | 1.7630 | 3750 | 0.0001 | - | | 1.7866 | 3800 | 0.0 | - | | 1.8101 | 3850 | 0.0001 | - | | 1.8336 | 3900 | 0.0001 | - | | 1.8571 | 3950 | 0.0 | - | | 1.8806 | 4000 | 0.0001 | - | | 1.9041 | 4050 | 0.0001 | - | | 1.9276 | 4100 | 0.0001 | - | | 1.9511 | 4150 | 0.0001 | - | | 1.9746 | 4200 | 0.0001 | - | | 1.9981 | 4250 | 0.0001 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.2.2+cu121 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```