File size: 2,258 Bytes
159c17e 7d2501d 159c17e 7d2501d 159c17e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DIALOGUE_two
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DIALOGUE_two
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3804
- Precision: 0.9762
- Recall: 0.9737
- F1: 0.9736
- Accuracy: 0.9737
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.3711 | 0.31 | 15 | 1.3213 | 0.5848 | 0.5132 | 0.4588 | 0.5132 |
| 1.2829 | 0.62 | 30 | 1.1830 | 0.7679 | 0.7237 | 0.7027 | 0.7237 |
| 1.1039 | 0.94 | 45 | 0.9695 | 0.8939 | 0.8158 | 0.8094 | 0.8158 |
| 0.9122 | 1.25 | 60 | 0.7720 | 0.9499 | 0.9474 | 0.9473 | 0.9474 |
| 0.7581 | 1.56 | 75 | 0.6220 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.6483 | 1.88 | 90 | 0.5096 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.5277 | 2.19 | 105 | 0.4330 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.4708 | 2.5 | 120 | 0.4003 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
| 0.4622 | 2.81 | 135 | 0.3804 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|