VideoMAE_Base_WLASL_100_200_epochs_p20_SR_8

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8301
  • Top 1 Accuracy: 0.5296
  • Top 5 Accuracy: 0.7988
  • Top 10 Accuracy: 0.8698
  • Accuracy: 0.5296
  • Precision: 0.5768
  • Recall: 0.5296
  • F1: 0.5133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 36000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Top 1 Accuracy Top 5 Accuracy Top 10 Accuracy Accuracy Precision Recall F1
18.5755 0.005 180 4.6413 0.0089 0.0444 0.1006 0.0089 0.0005 0.0089 0.0010
18.4843 1.0050 360 4.6308 0.0089 0.0621 0.1006 0.0089 0.0006 0.0089 0.0012
18.4592 2.0050 541 4.6209 0.0207 0.0710 0.1065 0.0207 0.0017 0.0207 0.0027
18.4604 3.005 721 4.6171 0.0178 0.0680 0.1213 0.0178 0.0005 0.0178 0.0010
18.4543 4.0050 901 4.6106 0.0237 0.0858 0.1450 0.0237 0.0008 0.0237 0.0016
18.3384 5.0050 1081 4.6190 0.0178 0.0680 0.1095 0.0178 0.0003 0.0178 0.0007
18.1947 6.0050 1262 4.6096 0.0296 0.0917 0.1361 0.0296 0.0038 0.0296 0.0057
18.1104 7.005 1442 4.5992 0.0355 0.0947 0.1450 0.0355 0.0060 0.0355 0.0082
18.0825 8.0050 1622 4.5940 0.0178 0.0976 0.1568 0.0178 0.0059 0.0178 0.0080
17.9081 9.0050 1802 4.5627 0.0325 0.1065 0.1686 0.0325 0.0076 0.0325 0.0103
17.4986 10.0050 1983 4.4287 0.0355 0.1213 0.2012 0.0355 0.0087 0.0355 0.0126
16.3869 11.005 2163 4.1366 0.0651 0.2337 0.3757 0.0651 0.0228 0.0651 0.0289
15.0278 12.0050 2343 3.7821 0.1065 0.3580 0.5178 0.1065 0.0601 0.1065 0.0572
13.4974 13.0050 2523 3.4419 0.2012 0.5030 0.6686 0.2012 0.1761 0.2012 0.1544
11.5774 14.0050 2704 3.2605 0.2189 0.5355 0.6982 0.2189 0.2069 0.2189 0.1725
10.263 15.005 2884 2.8508 0.3195 0.6627 0.8077 0.3195 0.3730 0.3195 0.2952
8.1589 16.0050 3064 2.5945 0.3905 0.7308 0.8462 0.3905 0.4168 0.3905 0.3592
6.8221 17.0050 3244 2.4311 0.3994 0.7337 0.8728 0.3994 0.4000 0.3994 0.3640
5.4923 18.0050 3425 2.2139 0.4615 0.7929 0.8669 0.4645 0.4886 0.4645 0.4350
4.1619 19.005 3605 2.1384 0.4734 0.7840 0.8817 0.4734 0.5276 0.4734 0.4503
3.3413 20.0050 3785 1.9583 0.5118 0.8107 0.9053 0.5118 0.5485 0.5118 0.4908
2.5832 21.0050 3965 1.8604 0.5 0.8284 0.9201 0.5 0.5000 0.5 0.4713
1.9003 22.0050 4146 1.9390 0.5296 0.8195 0.8905 0.5296 0.5860 0.5296 0.5140
1.4226 23.005 4326 1.9288 0.5266 0.8077 0.9083 0.5266 0.6341 0.5266 0.5303
1.1341 24.0050 4506 1.8854 0.5266 0.7899 0.8964 0.5266 0.5719 0.5266 0.5079
0.9315 25.0050 4686 1.7328 0.5769 0.8462 0.8994 0.5769 0.6261 0.5769 0.5565
0.7536 26.0050 4867 1.8349 0.5385 0.8195 0.8964 0.5385 0.6288 0.5385 0.5296
0.4518 27.005 5047 1.7999 0.5533 0.8550 0.9172 0.5533 0.6276 0.5533 0.5437
0.3322 28.0050 5227 1.6931 0.6006 0.8491 0.9260 0.6006 0.6578 0.6006 0.5896
0.403 29.0050 5407 1.8000 0.5740 0.8462 0.9142 0.5740 0.6240 0.5740 0.5584
0.1837 30.0050 5588 1.8765 0.5769 0.8373 0.8935 0.5769 0.6391 0.5769 0.5664
0.1579 31.005 5768 2.0752 0.5473 0.8432 0.8994 0.5473 0.6337 0.5473 0.5426
0.2079 32.0050 5948 1.9234 0.5947 0.8136 0.8964 0.5947 0.6524 0.5947 0.5791
0.2738 33.0050 6128 1.8529 0.6036 0.8491 0.9024 0.6065 0.6622 0.6065 0.5892
0.2621 34.0050 6309 1.9906 0.5740 0.8284 0.9172 0.5740 0.6191 0.5740 0.5640
0.2024 35.005 6489 1.8942 0.5976 0.8639 0.9260 0.5976 0.6615 0.5976 0.5886
0.0983 36.0050 6669 2.0340 0.5858 0.8254 0.8846 0.5858 0.6500 0.5858 0.5729
0.0592 37.0050 6849 1.8493 0.6095 0.8609 0.9231 0.6095 0.6775 0.6095 0.5986
0.0922 38.0050 7030 1.9036 0.6302 0.8669 0.9260 0.6302 0.6825 0.6302 0.6125
0.1547 39.005 7210 1.9897 0.6036 0.8432 0.9053 0.6036 0.6726 0.6036 0.5948
0.1162 40.0050 7390 2.3056 0.5828 0.8284 0.8876 0.5828 0.6518 0.5828 0.5675
0.0514 41.0050 7570 2.3211 0.5888 0.7988 0.8817 0.5888 0.6510 0.5888 0.5767
0.1138 42.0050 7751 2.3149 0.5740 0.8491 0.9053 0.5740 0.6285 0.5740 0.5628
0.1197 43.005 7931 2.1156 0.6124 0.8669 0.9172 0.6124 0.6907 0.6124 0.6073
0.0673 44.0050 8111 2.2835 0.5828 0.8580 0.9083 0.5828 0.6274 0.5828 0.5641
0.1501 45.0050 8291 2.2719 0.5917 0.8521 0.8905 0.5917 0.6419 0.5917 0.5757
0.2022 46.0050 8472 2.3422 0.5562 0.8491 0.9053 0.5562 0.6034 0.5562 0.5402
0.2185 47.005 8652 2.6431 0.5237 0.8284 0.8817 0.5237 0.5808 0.5237 0.5125
0.2385 48.0050 8832 2.3147 0.5799 0.8521 0.9053 0.5799 0.6324 0.5799 0.5623
0.1769 49.0050 9012 2.3451 0.5769 0.8373 0.8876 0.5769 0.6246 0.5769 0.5622
0.1927 50.0050 9193 2.7140 0.5562 0.8018 0.8728 0.5562 0.6025 0.5562 0.5347
0.2048 51.005 9373 2.3876 0.5917 0.8225 0.8935 0.5917 0.6367 0.5917 0.5748
0.1608 52.0050 9553 2.6983 0.5266 0.8077 0.8580 0.5266 0.5645 0.5266 0.5013
0.1256 53.0050 9733 2.7464 0.5385 0.8018 0.8905 0.5385 0.5773 0.5385 0.5257
0.1327 54.0050 9914 2.5133 0.5651 0.7988 0.8846 0.5651 0.5812 0.5651 0.5342
0.0503 55.005 10094 2.5687 0.5769 0.8314 0.8964 0.5769 0.6336 0.5769 0.5635
0.0841 56.0050 10274 2.7311 0.5503 0.8284 0.8905 0.5503 0.6025 0.5503 0.5329
0.0888 57.0050 10454 2.6771 0.5592 0.8195 0.8935 0.5592 0.6142 0.5592 0.5473
0.0629 58.0050 10635 2.8301 0.5296 0.7988 0.8698 0.5296 0.5768 0.5296 0.5133

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
377
Safetensors
Model size
86.3M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Shawon16/VideoMAE_Base_WLASL_100_200_epochs_p20_SR_8

Finetuned
(674)
this model