--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-oxford-iiit-pets results: [] --- # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2179 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7065 | 1.0 | 185 | 0.3667 | 0.9188 | | 0.3156 | 2.0 | 370 | 0.2584 | 0.9350 | | 0.2181 | 3.0 | 555 | 0.2265 | 0.9364 | | 0.1802 | 4.0 | 740 | 0.2159 | 0.9337 | | 0.1732 | 5.0 | 925 | 0.2124 | 0.9364 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1