audio: chunk_size: 352800 dim_f: 1024 dim_t: 801 # don't work (use in model) hop_length: 441 # don't work (use in model) n_fft: 2048 num_channels: 2 sample_rate: 44100 min_mean_abs: 0.000 model: dim: 512 depth: 12 stereo: true num_stems: 1 time_transformer_depth: 1 freq_transformer_depth: 1 linear_transformer_depth: 0 freqs_per_bands: !!python/tuple - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 48 - 48 - 48 - 48 - 48 - 48 - 48 - 48 - 128 - 129 dim_head: 64 heads: 8 attn_dropout: 0.1 ff_dropout: 0.1 flash_attn: true dim_freqs_in: 1025 stft_n_fft: 2048 stft_hop_length: 441 stft_win_length: 2048 stft_normalized: false mask_estimator_depth: 2 multi_stft_resolution_loss_weight: 1.0 multi_stft_resolutions_window_sizes: !!python/tuple - 4096 - 2048 - 1024 - 512 - 256 multi_stft_hop_size: 147 multi_stft_normalized: False training: batch_size: 2 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - vocals - other lr: 1.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: vocals num_epochs: 1000 num_steps: 1000 q: 0.95 coarse_loss_clip: true ema_momentum: 0.999 optimizer: adam other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true inference: batch_size: 4 dim_t: 1101 num_overlap: 2