audio: chunk_size: 352800 dim_f: 1024 dim_t: 256 hop_length: 441 n_fft: 2048 num_channels: 2 sample_rate: 44100 min_mean_abs: 000 model: dim: 384 depth: 6 stereo: true num_stems: 1 time_transformer_depth: 1 freq_transformer_depth: 1 num_bands: 60 dim_head: 64 heads: 8 attn_dropout: 0 ff_dropout: 0 flash_attn: True dim_freqs_in: 1025 sample_rate: 44100 # needed for mel filter bank from librosa stft_n_fft: 2048 stft_hop_length: 441 stft_win_length: 2048 stft_normalized: False mask_estimator_depth: 2 multi_stft_resolution_loss_weight: 1.0 multi_stft_resolutions_window_sizes: !!python/tuple - 4096 - 2048 - 1024 - 512 - 256 multi_stft_hop_size: 147 multi_stft_normalized: False training: batch_size: 4 gradient_accumulation_steps: 1 grad_clip: 0 instruments: - karaoke - other lr: 1.0e-05 patience: 2 reduce_factor: 0.95 target_instrument: karaoke num_epochs: 1000 num_steps: 2000 augmentation: false # enable augmentations by audiomentations and pedalboard augmentation_type: null use_mp3_compress: false # Deprecated augmentation_mix: false # Mix several stems of the same type with some probability augmentation_loudness: false # randomly change loudness of each stem augmentation_loudness_type: 1 # Type 1 or 2 augmentation_loudness_min: 0 augmentation_loudness_max: 0 q: 0.95 coarse_loss_clip: false ema_momentum: 0.999 optimizer: adam other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental use_amp: true inference: batch_size: 1 dim_t: 256 num_overlap: 4