# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import fairseq import soundfile as sf import torch import torch.nn.functional as F from feature_utils import get_path_iterator, dump_feature logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_w2v2_feature") class Wav2Vec2FeatureReader(object): def __init__(self, ckpt_path, layer, max_chunk=1600000): ( model, cfg, task, ) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path]) self.model = model[0].eval().cuda() self.task = task self.layer = layer # assume this is 1-based like HuBERT self.max_chunk = max_chunk logger.info(f"TASK CONFIG:\n{self.task.cfg}") logger.info(f" max_chunk = {self.max_chunk}") logger.info(f" model:\n{self.model}") def read_audio(self, path, ref_len=None): wav, sr = sf.read(path) assert sr == self.task.cfg.sample_rate, sr if wav.ndim == 2: wav = wav.mean(-1) assert wav.ndim == 1, wav.ndim if ref_len is not None and abs(ref_len - len(wav)) > 160: logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") return wav def get_feats(self, path, ref_len=None): x = self.read_audio(path, ref_len) with torch.no_grad(): x = torch.from_numpy(x).float().cuda() if self.task.cfg.normalize: x = F.layer_norm(x, x.shape) x = x.view(1, -1) feat = [] for start in range(0, x.size(1), self.max_chunk): x_chunk = x[:, start: start + self.max_chunk] res = self.model.extract_features( source=x_chunk, padding_mask=None, mask=False, ) # Supondo que o primeiro elemento da tupla seja o que você precisa feat_chunk = res[0] # Ajuste o índice conforme necessário feat.append(feat_chunk) return torch.cat(feat, 1).squeeze(0) def main(tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk): reader = Wav2Vec2FeatureReader(ckpt_path, layer, max_chunk) generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank) dump_feature(reader, generator, num, split, nshard, rank, feat_dir) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("tsv_dir") parser.add_argument("split") parser.add_argument("ckpt_path") parser.add_argument("layer", type=int) parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("feat_dir") parser.add_argument("--max_chunk", type=int, default=1600000) args = parser.parse_args() logger.info(args) main(**vars(args))