Shivraj8615 commited on
Commit
55c9e65
1 Parent(s): df817c9

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1567.75 +/- 161.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a362066342e2e4278344b182b55d520f44c4c913862af112eb3b02321c0a75db
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24923bd670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24923bd700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24923bd790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24923bd820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f24923bd8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f24923bd940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24923bd9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24923bda60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f24923bdaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24923bdb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24923bdc10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24923bdca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f24923bad00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1680358181579633579,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGAvjT83v4y/DPXIPsUshD9XyAu+IucCP6RpcL8F1QnAXF72O5DU1L8+xi0/uNnfv/t2Z7/ZGu8+uaMlP8IfFD4tuCm9iR9kPwz8OD/Ki4u/gvciQHtNrD3IrYM+ZlTyP0ZZmL+86xk/eicZwGSDlL8weC0/KbENvYnYDT/PaJs+YsqhvyMzgT+Bs02/JPlFvwTERr+Hq8K/3jdPv6WE+rtXeEm+OLq+PnBjKj8qJdM9lPHCP3jl97zl0R+/h3ACwOxUXb8ikZ4+lurCPxkdmD9GWZi/vOsZP3onGcBkg5S/r2NFP/jYf7+RFOI+uQtDP2YXAEAQjv8+zG+RPZrHVr9Aoi4/I6nEPvNJDb+3mas/IMZVPw7a/TzSOco+He6LPnD9kT7hkNq+NGAOPlslx78JvYU/eMRjPz6gFECCkpa+RlmYv7zrGT9M9NU+56NcP6aHRT9vPFi+UXYUP5UXUb8ik5W/dtjyPi0E6L8q+UQ/d07jvufYiT9Tn0+//Jxtvqu/mL+rrqA9OMYpPwo86jv9oNW/uAm+vkk9P8Bu8B8+DdwEP6GMUj/55Gu/1RkLvOIVVz9949S/TPTVPmSDlL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEN5k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfbvwvQAAAAAKLPO/AAAAAF/0SjwAAAAADP3vPwAAAABlBvK8AAAAAB9q3T8AAAAAiuW0PQAAAACl7OK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsrX9tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNZqHr0AAAAAgPLjvwAAAADzf+W9AAAAACKm8T8AAAAApUDqPQAAAACjUd0/AAAAAJTtcz0AAAAAyKLrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgodbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5LFM8AAAAAMXx+78AAAAAK3XduwAAAACQlwBAAAAAANXRkL0AAAAABrfgPwAAAABpC4U9AAAAAEim4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJbi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA84yevAAAAADYsdm/AAAAALcXqDsAAAAAgKPqPwAAAAAAVNW9AAAAAAI28z8AAAAAnUXCvAAAAAC3ON+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUH72dupCOMAWyUTegDjAF0lEdAqwMe6shgV3V9lChoBkdAmFX5qASWaGgHTegDaAhHQKsHgz0HyEt1fZQoaAZHQJoZvMV1wHZoB03oA2gIR0CrCEMmOU+tdX2UKGgGR0CZJPxe9i+daAdN6ANoCEdAqwqI4VARkHV9lChoBkdAmL3XtrsSkGgHTegDaAhHQKsTNllsguB1fZQoaAZHQJWKQhpxm05oB03oA2gIR0CrF7gJC0F9dX2UKGgGR0CZjNccENe/aAdN6ANoCEdAqxhxooNNJ3V9lChoBkdAmZqccdYGMWgHTegDaAhHQKsaKFdLQHB1fZQoaAZHQJsjL/IbOu9oB03oA2gIR0CrH9YHgP3BdX2UKGgGR0CbPcigTRICaAdN6ANoCEdAqyQ5JkGzKXV9lChoBkdAlr+VYhdMTWgHTegDaAhHQKsk72eQMhJ1fZQoaAZHQJsu+fthNM5oB03oA2gIR0CrJqi/47A+dX2UKGgGR0CZdnhaC+URaAdN6ANoCEdAqy69zuF6A3V9lChoBkdAmSgO9zwMIGgHTegDaAhHQKs0RKraM751fZQoaAZHQJai0U0vXbxoB03oA2gIR0CrNQYCyQgcdX2UKGgGR0CYSbAJLM9saAdN6ANoCEdAqzbIc7yQP3V9lChoBkdAjz+jD0lJH2gHTQIDaAhHQKs5qzyjHn51fZQoaAZHQJe5/kxREWtoB03oA2gIR0CrQRTVc2R8dX2UKGgGR0CWQOhL5AQhaAdN6ANoCEdAq0HOAd4mkXV9lChoBkdAmp3ZhWo3rGgHTegDaAhHQKtDlfTCtRx1fZQoaAZHQJY7fxpcophoB03oA2gIR0CrRrRubZvldX2UKGgGR0CZkjbj94u9aAdN6ANoCEdAq1F9WluWKXV9lChoBkdAmXivcSGrS2gHTegDaAhHQKtSP1Gsmv51fZQoaAZHQJuZfaRISUVoB03oA2gIR0CrVANbTtsvdX2UKGgGR0CUzTbgCOm0aAdN6ANoCEdAq1bnnjhky3V9lChoBkdAmCuUqx1PnGgHTegDaAhHQKteQJ/oaDR1fZQoaAZHQJes9FnZkCpoB03oA2gIR0CrXv0tI066dX2UKGgGR0CZS962OQyRaAdN6ANoCEdAq2DK+6Ae73V9lChoBkdAmNdCE+Pik2gHTegDaAhHQKtjruVopQV1fZQoaAZHQJkkSZCv5gxoB03oA2gIR0CrbioAGSpzdX2UKGgGR0CWLnbfP5YYaAdN6ANoCEdAq29Hl8w6AHV9lChoBkdAlq67yhBZ6mgHTegDaAhHQKtxAshgVoJ1fZQoaAZHQJTAj7tRekZoB03oA2gIR0Crc+Lc9GI9dX2UKGgGR0CYKvvsqrimaAdN6ANoCEdAq3tL/82rGXV9lChoBkdAlrv0iMYMv2gHTegDaAhHQKt8CN9YwIt1fZQoaAZHQJbcu8yvcJtoB03oA2gIR0CrfdT2exwAdX2UKGgGR0CYyA7UG3WnaAdN6ANoCEdAq4C6UJOWSnV9lChoBkdAmIh6N+9almgHTegDaAhHQKuKZOqvNeN1fZQoaAZHQJmpOfBeok1oB03oA2gIR0Cri46g2606dX2UKGgGR0CU4FrwOOKgaAdN6ANoCEdAq44STbFju3V9lChoBkdAmN7jqKP4mGgHTegDaAhHQKuQ9b3XZoR1fZQoaAZHQJrXwCJXQt1oB03oA2gIR0CrmFjCYTkAdX2UKGgGR0CTSKrgwXZXaAdN6ANoCEdAq5kTAWSEDnV9lChoBkdAlfN8neBQN2gHTegDaAhHQKua0KhL5AR1fZQoaAZHQJi5AGjbi6xoB03oA2gIR0CrnaxQizLPdX2UKGgGR0CW4XbA1vVFaAdN6ANoCEdAq6ZYz+FUQ3V9lChoBkdAm/mUqUeMh2gHTegDaAhHQKuneDnNgSh1fZQoaAZHQJiDlPgvUSZoB03oA2gIR0CrqilDv3JxdX2UKGgGR0CbbJ9Jz1braAdN6ANoCEdAq63CWw/xD3V9lChoBkdAmY4b3bmEG2gHTegDaAhHQKu1GeyRjjJ1fZQoaAZHQJuhYOc2BJ9oB03oA2gIR0CrtdNbkfcOdX2UKGgGR0CasNdvbXYlaAdN6ANoCEdAq7ebCxeLN3V9lChoBkdAlisy8OCoTGgHTegDaAhHQKu6bIwM6R11fZQoaAZHQJsBm6Zpi7VoB03oA2gIR0CrwlVmJ3xGdX2UKGgGR0CaucWilBQfaAdN6ANoCEdAq8NWLNwBHXV9lChoBkdAmB/gPZqVQmgHTegDaAhHQKvF43BpHqh1fZQoaAZHQJvV9JK8L8doB03oA2gIR0CrykLCemNzdX2UKGgGR0CbrWUwi7kGaAdN6ANoCEdAq9Gb6vaDf3V9lChoBkdAk2eDJU5uImgHTegDaAhHQKvSWgMc6vJ1fZQoaAZHQJcN1LeyiVVoB03oA2gIR0Cr1BWd/axpdX2UKGgGR0CaQaN7SiM6aAdN6ANoCEdAq9cBlcyFf3V9lChoBkdAmJF6IrOJL2gHTegDaAhHQKveUdvKlpJ1fZQoaAZHQJpb2SeRPoFoB03oA2gIR0Cr315r56+ndX2UKGgGR0CY1YKdhAnlaAdN6ANoCEdAq+HaWX1J2HV9lChoBkdAmEhBEBsAN2gHTegDaAhHQKvmK7mMfih1fZQoaAZHQJs4YXSBshxoB03oA2gIR0Cr7nQV0tAcdX2UKGgGR0CcBEVk+X7caAdN6ANoCEdAq+8y13MY/HV9lChoBkdAmFsYi5d4V2gHTegDaAhHQKvw82sq8UV1fZQoaAZHQJl17IV/MGJoB03oA2gIR0Cr89/J3gUDdX2UKGgGR0CZzZ3CKrJbaAdN6ANoCEdAq/slWZJCjXV9lChoBkdAmwJlkMCtBGgHTegDaAhHQKv72L9deIF1fZQoaAZHQJfhvwx33YdoB03oA2gIR0Cr/cNATqSpdX2UKGgGR0CZtcoAn2IwaAdN6ANoCEdArAHnHT7VKHV9lChoBkdAkt8jIq9XcWgHTegDaAhHQKwLJ+jua4N1fZQoaAZHQJsRKK8+Ro1oB03oA2gIR0CsC9zrNW2gdX2UKGgGR0CacLWNFSbZaAdN6ANoCEdArA2Ud1dPcnV9lChoBkdAm+FY/eLvTmgHTegDaAhHQKwQbmK64Dt1fZQoaAZHQJuGNPN3W4FoB03oA2gIR0CsF7QdCE6DdX2UKGgGR0CZIfr6tT1kaAdN6ANoCEdArBh3CdjG1nV9lChoBkdAm8/7VvuPWGgHTegDaAhHQKwaJLA57w91fZQoaAZHQJe0p48lolFoB03oA2gIR0CsHa/VI7NjdX2UKGgGR0CbiUGwRoRJaAdN6ANoCEdArClCN4qwyXV9lChoBkdAmYHfxYq5LGgHTegDaAhHQKwqV83Mpw11fZQoaAZHQIrx2YUnG85oB02kAmgIR0CsKyIDYAbRdX2UKGgGR0CZm/Mm4RVZaAdN6ANoCEdArC0WnsLORnV9lChoBkdAlQm9yT6i02gHTegDaAhHQKw4QCoS+QF1fZQoaAZHQJZ4iWUr08NoB03oA2gIR0CsOPyJbdJrdX2UKGgGR0CLTvjCpFTeaAdN6ANoCEdArDl/oNd7fHV9lChoBkdAmDhPVRUFS2gHTegDaAhHQKw6tR64Uex1fZQoaAZHQJs7SPdVNpNoB03oA2gIR0CsSGVqesgddX2UKGgGR0CZIXawUxmDaAdN6ANoCEdArEkl/Ue+23V9lChoBkdAkEX+YhMaj2gHTegDaAhHQKxJppUPxx11fZQoaAZHQJdU71+RYA9oB03oA2gIR0CsSu4Xwb2ldX2UKGgGR0CWNWQa72+PaAdN6ANoCEdArFUgGyHEdnV9lChoBkdAkXCPnjhky2gHTegDaAhHQKxV1mDDjzZ1fZQoaAZHQJAlfKuB+WpoB03oA2gIR0CsVlgLJCBxdX2UKGgGR0CXKIA2hqTKaAdN6ANoCEdArFeZ7HAAQ3V9lChoBkdAmGUEORT0hGgHTegDaAhHQKxlXxFy7wt1fZQoaAZHQJgUbsE7nxJoB03oA2gIR0CsZhZVwPy1dX2UKGgGR0CaWoqQA+6iaAdN6ANoCEdArGaa9M9KVnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce8de5ff27b3819d15ab1b46ec260e0a7f42f533a5a83032674c9b1ece37182c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e15bc780e51daa4aa639016faca342ddb845006399a035ac6facb8759317b9
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24923bd670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24923bd700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24923bd790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24923bd820>", "_build": "<function ActorCriticPolicy._build at 0x7f24923bd8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f24923bd940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24923bd9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24923bda60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24923bdaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24923bdb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24923bdc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24923bdca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f24923bad00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680358181579633579, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGAvjT83v4y/DPXIPsUshD9XyAu+IucCP6RpcL8F1QnAXF72O5DU1L8+xi0/uNnfv/t2Z7/ZGu8+uaMlP8IfFD4tuCm9iR9kPwz8OD/Ki4u/gvciQHtNrD3IrYM+ZlTyP0ZZmL+86xk/eicZwGSDlL8weC0/KbENvYnYDT/PaJs+YsqhvyMzgT+Bs02/JPlFvwTERr+Hq8K/3jdPv6WE+rtXeEm+OLq+PnBjKj8qJdM9lPHCP3jl97zl0R+/h3ACwOxUXb8ikZ4+lurCPxkdmD9GWZi/vOsZP3onGcBkg5S/r2NFP/jYf7+RFOI+uQtDP2YXAEAQjv8+zG+RPZrHVr9Aoi4/I6nEPvNJDb+3mas/IMZVPw7a/TzSOco+He6LPnD9kT7hkNq+NGAOPlslx78JvYU/eMRjPz6gFECCkpa+RlmYv7zrGT9M9NU+56NcP6aHRT9vPFi+UXYUP5UXUb8ik5W/dtjyPi0E6L8q+UQ/d07jvufYiT9Tn0+//Jxtvqu/mL+rrqA9OMYpPwo86jv9oNW/uAm+vkk9P8Bu8B8+DdwEP6GMUj/55Gu/1RkLvOIVVz9949S/TPTVPmSDlL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADEN5k0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfbvwvQAAAAAKLPO/AAAAAF/0SjwAAAAADP3vPwAAAABlBvK8AAAAAB9q3T8AAAAAiuW0PQAAAACl7OK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsrX9tAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNZqHr0AAAAAgPLjvwAAAADzf+W9AAAAACKm8T8AAAAApUDqPQAAAACjUd0/AAAAAJTtcz0AAAAAyKLrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgodbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID5LFM8AAAAAMXx+78AAAAAK3XduwAAAACQlwBAAAAAANXRkL0AAAAABrfgPwAAAABpC4U9AAAAAEim4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJbi1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA84yevAAAAADYsdm/AAAAALcXqDsAAAAAgKPqPwAAAAAAVNW9AAAAAAI28z8AAAAAnUXCvAAAAAC3ON+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJUH72dupCOMAWyUTegDjAF0lEdAqwMe6shgV3V9lChoBkdAmFX5qASWaGgHTegDaAhHQKsHgz0HyEt1fZQoaAZHQJoZvMV1wHZoB03oA2gIR0CrCEMmOU+tdX2UKGgGR0CZJPxe9i+daAdN6ANoCEdAqwqI4VARkHV9lChoBkdAmL3XtrsSkGgHTegDaAhHQKsTNllsguB1fZQoaAZHQJWKQhpxm05oB03oA2gIR0CrF7gJC0F9dX2UKGgGR0CZjNccENe/aAdN6ANoCEdAqxhxooNNJ3V9lChoBkdAmZqccdYGMWgHTegDaAhHQKsaKFdLQHB1fZQoaAZHQJsjL/IbOu9oB03oA2gIR0CrH9YHgP3BdX2UKGgGR0CbPcigTRICaAdN6ANoCEdAqyQ5JkGzKXV9lChoBkdAlr+VYhdMTWgHTegDaAhHQKsk72eQMhJ1fZQoaAZHQJsu+fthNM5oB03oA2gIR0CrJqi/47A+dX2UKGgGR0CZdnhaC+URaAdN6ANoCEdAqy69zuF6A3V9lChoBkdAmSgO9zwMIGgHTegDaAhHQKs0RKraM751fZQoaAZHQJai0U0vXbxoB03oA2gIR0CrNQYCyQgcdX2UKGgGR0CYSbAJLM9saAdN6ANoCEdAqzbIc7yQP3V9lChoBkdAjz+jD0lJH2gHTQIDaAhHQKs5qzyjHn51fZQoaAZHQJe5/kxREWtoB03oA2gIR0CrQRTVc2R8dX2UKGgGR0CWQOhL5AQhaAdN6ANoCEdAq0HOAd4mkXV9lChoBkdAmp3ZhWo3rGgHTegDaAhHQKtDlfTCtRx1fZQoaAZHQJY7fxpcophoB03oA2gIR0CrRrRubZvldX2UKGgGR0CZkjbj94u9aAdN6ANoCEdAq1F9WluWKXV9lChoBkdAmXivcSGrS2gHTegDaAhHQKtSP1Gsmv51fZQoaAZHQJuZfaRISUVoB03oA2gIR0CrVANbTtsvdX2UKGgGR0CUzTbgCOm0aAdN6ANoCEdAq1bnnjhky3V9lChoBkdAmCuUqx1PnGgHTegDaAhHQKteQJ/oaDR1fZQoaAZHQJes9FnZkCpoB03oA2gIR0CrXv0tI066dX2UKGgGR0CZS962OQyRaAdN6ANoCEdAq2DK+6Ae73V9lChoBkdAmNdCE+Pik2gHTegDaAhHQKtjruVopQV1fZQoaAZHQJkkSZCv5gxoB03oA2gIR0CrbioAGSpzdX2UKGgGR0CWLnbfP5YYaAdN6ANoCEdAq29Hl8w6AHV9lChoBkdAlq67yhBZ6mgHTegDaAhHQKtxAshgVoJ1fZQoaAZHQJTAj7tRekZoB03oA2gIR0Crc+Lc9GI9dX2UKGgGR0CYKvvsqrimaAdN6ANoCEdAq3tL/82rGXV9lChoBkdAlrv0iMYMv2gHTegDaAhHQKt8CN9YwIt1fZQoaAZHQJbcu8yvcJtoB03oA2gIR0CrfdT2exwAdX2UKGgGR0CYyA7UG3WnaAdN6ANoCEdAq4C6UJOWSnV9lChoBkdAmIh6N+9almgHTegDaAhHQKuKZOqvNeN1fZQoaAZHQJmpOfBeok1oB03oA2gIR0Cri46g2606dX2UKGgGR0CU4FrwOOKgaAdN6ANoCEdAq44STbFju3V9lChoBkdAmN7jqKP4mGgHTegDaAhHQKuQ9b3XZoR1fZQoaAZHQJrXwCJXQt1oB03oA2gIR0CrmFjCYTkAdX2UKGgGR0CTSKrgwXZXaAdN6ANoCEdAq5kTAWSEDnV9lChoBkdAlfN8neBQN2gHTegDaAhHQKua0KhL5AR1fZQoaAZHQJi5AGjbi6xoB03oA2gIR0CrnaxQizLPdX2UKGgGR0CW4XbA1vVFaAdN6ANoCEdAq6ZYz+FUQ3V9lChoBkdAm/mUqUeMh2gHTegDaAhHQKuneDnNgSh1fZQoaAZHQJiDlPgvUSZoB03oA2gIR0CrqilDv3JxdX2UKGgGR0CbbJ9Jz1braAdN6ANoCEdAq63CWw/xD3V9lChoBkdAmY4b3bmEG2gHTegDaAhHQKu1GeyRjjJ1fZQoaAZHQJuhYOc2BJ9oB03oA2gIR0CrtdNbkfcOdX2UKGgGR0CasNdvbXYlaAdN6ANoCEdAq7ebCxeLN3V9lChoBkdAlisy8OCoTGgHTegDaAhHQKu6bIwM6R11fZQoaAZHQJsBm6Zpi7VoB03oA2gIR0CrwlVmJ3xGdX2UKGgGR0CaucWilBQfaAdN6ANoCEdAq8NWLNwBHXV9lChoBkdAmB/gPZqVQmgHTegDaAhHQKvF43BpHqh1fZQoaAZHQJvV9JK8L8doB03oA2gIR0CrykLCemNzdX2UKGgGR0CbrWUwi7kGaAdN6ANoCEdAq9Gb6vaDf3V9lChoBkdAk2eDJU5uImgHTegDaAhHQKvSWgMc6vJ1fZQoaAZHQJcN1LeyiVVoB03oA2gIR0Cr1BWd/axpdX2UKGgGR0CaQaN7SiM6aAdN6ANoCEdAq9cBlcyFf3V9lChoBkdAmJF6IrOJL2gHTegDaAhHQKveUdvKlpJ1fZQoaAZHQJpb2SeRPoFoB03oA2gIR0Cr315r56+ndX2UKGgGR0CY1YKdhAnlaAdN6ANoCEdAq+HaWX1J2HV9lChoBkdAmEhBEBsAN2gHTegDaAhHQKvmK7mMfih1fZQoaAZHQJs4YXSBshxoB03oA2gIR0Cr7nQV0tAcdX2UKGgGR0CcBEVk+X7caAdN6ANoCEdAq+8y13MY/HV9lChoBkdAmFsYi5d4V2gHTegDaAhHQKvw82sq8UV1fZQoaAZHQJl17IV/MGJoB03oA2gIR0Cr89/J3gUDdX2UKGgGR0CZzZ3CKrJbaAdN6ANoCEdAq/slWZJCjXV9lChoBkdAmwJlkMCtBGgHTegDaAhHQKv72L9deIF1fZQoaAZHQJfhvwx33YdoB03oA2gIR0Cr/cNATqSpdX2UKGgGR0CZtcoAn2IwaAdN6ANoCEdArAHnHT7VKHV9lChoBkdAkt8jIq9XcWgHTegDaAhHQKwLJ+jua4N1fZQoaAZHQJsRKK8+Ro1oB03oA2gIR0CsC9zrNW2gdX2UKGgGR0CacLWNFSbZaAdN6ANoCEdArA2Ud1dPcnV9lChoBkdAm+FY/eLvTmgHTegDaAhHQKwQbmK64Dt1fZQoaAZHQJuGNPN3W4FoB03oA2gIR0CsF7QdCE6DdX2UKGgGR0CZIfr6tT1kaAdN6ANoCEdArBh3CdjG1nV9lChoBkdAm8/7VvuPWGgHTegDaAhHQKwaJLA57w91fZQoaAZHQJe0p48lolFoB03oA2gIR0CsHa/VI7NjdX2UKGgGR0CbiUGwRoRJaAdN6ANoCEdArClCN4qwyXV9lChoBkdAmYHfxYq5LGgHTegDaAhHQKwqV83Mpw11fZQoaAZHQIrx2YUnG85oB02kAmgIR0CsKyIDYAbRdX2UKGgGR0CZm/Mm4RVZaAdN6ANoCEdArC0WnsLORnV9lChoBkdAlQm9yT6i02gHTegDaAhHQKw4QCoS+QF1fZQoaAZHQJZ4iWUr08NoB03oA2gIR0CsOPyJbdJrdX2UKGgGR0CLTvjCpFTeaAdN6ANoCEdArDl/oNd7fHV9lChoBkdAmDhPVRUFS2gHTegDaAhHQKw6tR64Uex1fZQoaAZHQJs7SPdVNpNoB03oA2gIR0CsSGVqesgddX2UKGgGR0CZIXawUxmDaAdN6ANoCEdArEkl/Ue+23V9lChoBkdAkEX+YhMaj2gHTegDaAhHQKxJppUPxx11fZQoaAZHQJdU71+RYA9oB03oA2gIR0CsSu4Xwb2ldX2UKGgGR0CWNWQa72+PaAdN6ANoCEdArFUgGyHEdnV9lChoBkdAkXCPnjhky2gHTegDaAhHQKxV1mDDjzZ1fZQoaAZHQJAlfKuB+WpoB03oA2gIR0CsVlgLJCBxdX2UKGgGR0CXKIA2hqTKaAdN6ANoCEdArFeZ7HAAQ3V9lChoBkdAmGUEORT0hGgHTegDaAhHQKxlXxFy7wt1fZQoaAZHQJgUbsE7nxJoB03oA2gIR0CsZhZVwPy1dX2UKGgGR0CaWoqQA+6iaAdN6ANoCEdArGaa9M9KVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39b36b1e58587445c7f69636a58220b7a0c8f30d59573ba5b99fdc68dfb399b6
3
+ size 1096347
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1567.74551544587, "std_reward": 161.5543967365443, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T15:18:00.992089"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:451b91e8ea8eecd9e75bc55a9b4e48571b02028b114718133a7d70a5899b3f28
3
+ size 2136