Shlomo commited on
Commit
f290e0f
·
1 Parent(s): 4cc7d62

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.12 +/- 13.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7964a523e290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7964a523e320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7964a523e3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7964a523e440>", "_build": "<function ActorCriticPolicy._build at 0x7964a523e4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7964a523e560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7964a523e5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7964a523e680>", "_predict": "<function ActorCriticPolicy._predict at 0x7964a523e710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7964a523e7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7964a523e830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7964a523e8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7964a5239900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694693543064558219, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD7Ab0DMRa8fsVsPGrCtTycem29fuWWPQAAgD8AAIA/DXPmPfw0jz+mNRI+rxPNvnoxQj7OeSG9AAAAAAAAAABmUjy9pGWyPqKJgLzhuEy+y8SJPGqzLjwAAAAAAAAAABoIVz3hZJ66T1GZOhMUjjWcZDC6eL+wuQAAgD8AAIA/zaBXPLcBmD7lc/C8XYZPvsIc7rsuRO88AAAAAAAAAACa0zo8ys+iPy5nyD0B4dq+0lMNPWaVEj0AAAAAAAAAAM0mVzyPjj+6FuWzusYd2rX2z+S5mvTNOQAAgD8AAIA/JmagPYW4mz+a8tU+vGD+vm5Sez1zeFQ+AAAAAAAAAACzoye99lx5uhsrlDVZK4MwKC86unr3sLQAAIA/AACAP02tcr3DGX+64E3FO+o4wTeXeO+5YuUbNgAAgD8AAIA/TZIwvd/z4zxlFD8+K39SvmgeYT2wQg68AAAAAAAAAAAAFu08rnuJuq2/mLvVr0w4StwBu+30BjgAAIA/AACAP+bnYL1CkDI+b2OGPpzyM77BjtI9xcCHPAAAAAAAAAAALW1OPkyQ3z4eGvO9wnOUvoEYkj0EtMU8AAAAAAAAAACTNRO+MC3IPm3kJz3bnZG+vEMrvRpk6T0AAAAAAAAAAObvOj0p7Am69qFRumG8hrUYFDQ7so10OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG96704BFNOMAWyUTT8BjAF0lEdAlbUzhP0qY3V9lChoBkdAcEozJ6po9WgHS/9oCEdAlck+8scyWXV9lChoBkdAcHL33YcvNGgHTUUBaAhHQJXKH0kGA091fZQoaAZHQHHAW+TNdJJoB00lAWgIR0CVy4WcBltkdX2UKGgGR0BwFDi6xxDLaAdNPAFoCEdAlcuGfwqiGnV9lChoBkdAY9mVUMoc72gHTcACaAhHQJXPWEHt4Rp1fZQoaAZHQHADFlGwzLxoB03WAWgIR0CV0bBczImxdX2UKGgGR0Bs6t+RYA80aAdNWgFoCEdAldJzposZpHV9lChoBkdAcK0+8oQWe2gHTTkBaAhHQJXTxBu4wyt1fZQoaAZHQG6utedCmdloB01KAWgIR0CV0+GhEjPfdX2UKGgGR0BwA8A5q/M4aAdNRAFoCEdAldSBIvrWy3V9lChoBkdAbPqoaUA1emgHTU4BaAhHQJXUgj3VTaV1fZQoaAZHQHDRxigCfYloB00vAWgIR0CV1NriEQGwdX2UKGgGR0BHM01qFh5PaAdN6ANoCEdAldau4PPLPnV9lChoBkdAQySqABkqc2gHS+poCEdAldbTR2KVIXV9lChoBkdAciGhuO0b+GgHTTcBaAhHQJXXfHaN+9d1fZQoaAZHQG7k7jDKoydoB00qAWgIR0CV14c0Ltu2dX2UKGgGR0BvOJXyRSxaaAdNIAFoCEdAldhp9uxbCHV9lChoBkdAbh1j3mFJx2gHTUMBaAhHQJXYuDpTuOV1fZQoaAZHQCvjc45tFa1oB0vgaAhHQJXa6VzIV/N1fZQoaAZHQE2hlHz6JqJoB0vmaAhHQJXbFRvWH1x1fZQoaAZHQHKTmJBPbfxoB008AWgIR0CV22SAYpDvdX2UKGgGR0BwD2PFNtZWaAdNGwFoCEdAlduUka/ATXV9lChoBkdAcGRycCo0h2gHTUIBaAhHQJXdUjkdWAB1fZQoaAZHQHB0tORDCxhoB003AWgIR0CV3mH8CPp7dX2UKGgGR0Bv6g5T6zmfaAdNQwFoCEdAld8xKpT/AHV9lChoBkdAcZfOYplSTGgHTRwBaAhHQJXgCVjZtel1fZQoaAZHQHCcTlDF6zFoB00wAWgIR0CV4JYcebNKdX2UKGgGR0BvKjxEv0yyaAdL/2gIR0CV4UT1TR6XdX2UKGgGR0ByNA078vVWaAdNLwFoCEdAleF+xOclPnV9lChoBkdAcJJai9IwumgHTZwBaAhHQJXh3fHggox1fZQoaAZHQHJ09SMtK7JoB01QAWgIR0CV4oxxDLKWdX2UKGgGR0BwS4LiMo+faAdNMgFoCEdAleKckpqh13V9lChoBkdAXeax2St/4WgHTegDaAhHQJXjYs+V1Ol1fZQoaAZHQG5bCM5wOvtoB00XAWgIR0CV5Ks0pEx7dX2UKGgGR0BJgt8eCCjDaAdL+2gIR0CV5cC4z7/GdX2UKGgGR0BxknUBnzxxaAdNSgFoCEdAleYfJNj9XXV9lChoBkdAchOjIq9XcWgHTV0BaAhHQJXmnjYI0Il1fZQoaAZHQHIF358BuGdoB00BAWgIR0CV5u3VCojwdX2UKGgGR0Bt2iup0fYBaAdNWQFoCEdAlecffTCtR3V9lChoBkdAceIbKzRhMWgHTRABaAhHQJXo9vCMxXZ1fZQoaAZHQHDGRQN0/4ZoB00OAWgIR0CV6XRqGlANdX2UKGgGR0BwhN47ihnKaAdNQgFoCEdAlenctTUAk3V9lChoBkdAb1Rh3qzJIWgHTQwBaAhHQJXqQ7p3X7N1fZQoaAZHQFhmXjU/fO5oB03oA2gIR0CV6yfYjB2wdX2UKGgGR0BweC21D0DmaAdNDwFoCEdAletoeYD1XnV9lChoBkdAU07uVopQUGgHS/poCEdAleumJJoTPHV9lChoBkdAcBVwrDqGDmgHTS0BaAhHQJXrs0sOG0x1fZQoaAZHQHEexxDLKV9oB00tAWgIR0CV7EW69TP0dX2UKGgGR0BwifkXDWK/aAdNCwFoCEdAle1DR+jM3nV9lChoBkdAc145mh/RV2gHTa8BaAhHQJYBRMQEpy91fZQoaAZHQHFEHWWhRIloB00KAWgIR0CWAUXmvGIbdX2UKGgGR0BxV0kAxSHeaAdNTQFoCEdAlgPKeXiR4nV9lChoBkdAbAgdU83dbmgHTSABaAhHQJYGKzsyBTZ1fZQoaAZHQHCOJ/LDAJtoB02PAWgIR0CWBu8GcFyJdX2UKGgGR0BsmZH09QoDaAdNIgFoCEdAlgcb1yvLYHV9lChoBkdAcJkKQ7tAs2gHTTgBaAhHQJYJAwfyPMl1fZQoaAZHQHEGTXz19ORoB02XAWgIR0CWCWb/ffoBdX2UKGgGR0BterlDF6zFaAdNlgFoCEdAlgmsDOkcj3V9lChoBkdAcOcoysS00GgHTRcBaAhHQJYJxph4MWp1fZQoaAZHQHD5+Aqd6LRoB01OAWgIR0CWCq91U2k0dX2UKGgGR0Bw3Xd1uBMBaAdNKgFoCEdAlgr/642CNHV9lChoBkdAcg8vtMPBi2gHTTEBaAhHQJYLaLYPGyZ1fZQoaAZHQG5bKNp/PPdoB00cAWgIR0CWDPtqpLmIdX2UKGgGR0ByQ8YDTz/ZaAdNagFoCEdAlg0rkOqeb3V9lChoBkdAcDS2kzoECGgHTU8BaAhHQJYNujDbah91fZQoaAZHQHJ+mHgxagVoB01XAWgIR0CWEbDaoMrmdX2UKGgGR0BJdY8lolD4aAdL72gIR0CWEcyc0+C9dX2UKGgGR0BwcwWnCO3laAdNJwFoCEdAlhHUeU6gd3V9lChoBkdAcAPLgGbCrWgHTZgBaAhHQJYT96/qPfd1fZQoaAZHQHIZ2P91loVoB00IAWgIR0CWFDwXZXdTdX2UKGgGR0BwmIk+otL+aAdNNAFoCEdAlhRZdSl3yXV9lChoBkdAcCG0jC53DGgHTR0BaAhHQJYUvCyhSLt1fZQoaAZHQG+hkZ75VOtoB01eAWgIR0CWFUe54GD+dX2UKGgGR0BtAJvxYq5LaAdNHQFoCEdAlhY1LSNOunV9lChoBkdAcKONUwSJ0mgHTUMBaAhHQJYWoz2vjfh1fZQoaAZHQG7bT7EYO2BoB007AWgIR0CWF52IwdsBdX2UKGgGR0BwrSP+4smOaAdNGgFoCEdAlhhGV/tpmHV9lChoBkdAb9w2tMfzSWgHTWkBaAhHQJYYsEGJN0x1fZQoaAZHQHKR8rNGEwpoB01MAWgIR0CWGWKoQ4CIdX2UKGgGR0BuzPyf+S8raAdNngFoCEdAlhmr74zrNXV9lChoBkdAbyvttygf2mgHTVEBaAhHQJYZrRSgoPV1fZQoaAZHQHEewZsKsuFoB00pAWgIR0CWG9xeb/fgdX2UKGgGR0BxBSz8gpz+aAdNVgFoCEdAlh1Jt3wCsHV9lChoBkdAcsxPD50r9WgHTVwBaAhHQJYdnp/wy7B1fZQoaAZHQDF/5N47ihpoB0vdaAhHQJYd5rEcbR51fZQoaAZHQHGxoYR/ViFoB00VAWgIR0CWHgf0VafSdX2UKGgGR0Bt6ijN6gM+aAdNLgFoCEdAlh5f2saKk3V9lChoBkdAcZPKfnOjZmgHTTQBaAhHQJYepLSNOud1fZQoaAZHQHKQSz5XU6RoB01HAWgIR0CWHue3hGYsdX2UKGgGR0Bw9H8tPHktaAdNUwFoCEdAliBwYYR/VnV9lChoBkdAcO3D+zdDY2gHTQ8BaAhHQJYg9gJC0F91fZQoaAZHQHESLS7Xg+BoB00+AWgIR0CWIeyd4FA3dX2UKGgGR0BvB0z9CNS7aAdNfgFoCEdAliLRiXpnpXV9lChoBkdAb0h94NZvDWgHTUcBaAhHQJYjSfe1rqN1fZQoaAZHQHJG1uaWom5oB00xAWgIR0CWI5LhrFfidX2UKGgGR0BxMgIw/PgOaAdNOwFoCEdAliPoqPOpsHV9lChoBkdAcB729cry2GgHTRABaAhHQJYmwixFAml1fZQoaAZHQHEEvOhTOxBoB00lAWgIR0CWKBKJEYwZdX2UKGgGR0BwRfGACnxbaAdNZQFoCEdAligmaYu01XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 292, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-shlomo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6549d96bd53b541673a0f33c166eb5fb4d36f5efb7436a6cbc48f576d32f0cd
3
+ size 146746
ppo-LunarLander-v2-shlomo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-shlomo/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7964a523e290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7964a523e320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7964a523e3b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7964a523e440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7964a523e4d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7964a523e560>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7964a523e5f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7964a523e680>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7964a523e710>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7964a523e7a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7964a523e830>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7964a523e8c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7964a5239900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694693543064558219,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD7Ab0DMRa8fsVsPGrCtTycem29fuWWPQAAgD8AAIA/DXPmPfw0jz+mNRI+rxPNvnoxQj7OeSG9AAAAAAAAAABmUjy9pGWyPqKJgLzhuEy+y8SJPGqzLjwAAAAAAAAAABoIVz3hZJ66T1GZOhMUjjWcZDC6eL+wuQAAgD8AAIA/zaBXPLcBmD7lc/C8XYZPvsIc7rsuRO88AAAAAAAAAACa0zo8ys+iPy5nyD0B4dq+0lMNPWaVEj0AAAAAAAAAAM0mVzyPjj+6FuWzusYd2rX2z+S5mvTNOQAAgD8AAIA/JmagPYW4mz+a8tU+vGD+vm5Sez1zeFQ+AAAAAAAAAACzoye99lx5uhsrlDVZK4MwKC86unr3sLQAAIA/AACAP02tcr3DGX+64E3FO+o4wTeXeO+5YuUbNgAAgD8AAIA/TZIwvd/z4zxlFD8+K39SvmgeYT2wQg68AAAAAAAAAAAAFu08rnuJuq2/mLvVr0w4StwBu+30BjgAAIA/AACAP+bnYL1CkDI+b2OGPpzyM77BjtI9xcCHPAAAAAAAAAAALW1OPkyQ3z4eGvO9wnOUvoEYkj0EtMU8AAAAAAAAAACTNRO+MC3IPm3kJz3bnZG+vEMrvRpk6T0AAAAAAAAAAObvOj0p7Am69qFRumG8hrUYFDQ7so10OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG96704BFNOMAWyUTT8BjAF0lEdAlbUzhP0qY3V9lChoBkdAcEozJ6po9WgHS/9oCEdAlck+8scyWXV9lChoBkdAcHL33YcvNGgHTUUBaAhHQJXKH0kGA091fZQoaAZHQHHAW+TNdJJoB00lAWgIR0CVy4WcBltkdX2UKGgGR0BwFDi6xxDLaAdNPAFoCEdAlcuGfwqiGnV9lChoBkdAY9mVUMoc72gHTcACaAhHQJXPWEHt4Rp1fZQoaAZHQHADFlGwzLxoB03WAWgIR0CV0bBczImxdX2UKGgGR0Bs6t+RYA80aAdNWgFoCEdAldJzposZpHV9lChoBkdAcK0+8oQWe2gHTTkBaAhHQJXTxBu4wyt1fZQoaAZHQG6utedCmdloB01KAWgIR0CV0+GhEjPfdX2UKGgGR0BwA8A5q/M4aAdNRAFoCEdAldSBIvrWy3V9lChoBkdAbPqoaUA1emgHTU4BaAhHQJXUgj3VTaV1fZQoaAZHQHDRxigCfYloB00vAWgIR0CV1NriEQGwdX2UKGgGR0BHM01qFh5PaAdN6ANoCEdAldau4PPLPnV9lChoBkdAQySqABkqc2gHS+poCEdAldbTR2KVIXV9lChoBkdAciGhuO0b+GgHTTcBaAhHQJXXfHaN+9d1fZQoaAZHQG7k7jDKoydoB00qAWgIR0CV14c0Ltu2dX2UKGgGR0BvOJXyRSxaaAdNIAFoCEdAldhp9uxbCHV9lChoBkdAbh1j3mFJx2gHTUMBaAhHQJXYuDpTuOV1fZQoaAZHQCvjc45tFa1oB0vgaAhHQJXa6VzIV/N1fZQoaAZHQE2hlHz6JqJoB0vmaAhHQJXbFRvWH1x1fZQoaAZHQHKTmJBPbfxoB008AWgIR0CV22SAYpDvdX2UKGgGR0BwD2PFNtZWaAdNGwFoCEdAlduUka/ATXV9lChoBkdAcGRycCo0h2gHTUIBaAhHQJXdUjkdWAB1fZQoaAZHQHB0tORDCxhoB003AWgIR0CV3mH8CPp7dX2UKGgGR0Bv6g5T6zmfaAdNQwFoCEdAld8xKpT/AHV9lChoBkdAcZfOYplSTGgHTRwBaAhHQJXgCVjZtel1fZQoaAZHQHCcTlDF6zFoB00wAWgIR0CV4JYcebNKdX2UKGgGR0BvKjxEv0yyaAdL/2gIR0CV4UT1TR6XdX2UKGgGR0ByNA078vVWaAdNLwFoCEdAleF+xOclPnV9lChoBkdAcJJai9IwumgHTZwBaAhHQJXh3fHggox1fZQoaAZHQHJ09SMtK7JoB01QAWgIR0CV4oxxDLKWdX2UKGgGR0BwS4LiMo+faAdNMgFoCEdAleKckpqh13V9lChoBkdAXeax2St/4WgHTegDaAhHQJXjYs+V1Ol1fZQoaAZHQG5bCM5wOvtoB00XAWgIR0CV5Ks0pEx7dX2UKGgGR0BJgt8eCCjDaAdL+2gIR0CV5cC4z7/GdX2UKGgGR0BxknUBnzxxaAdNSgFoCEdAleYfJNj9XXV9lChoBkdAchOjIq9XcWgHTV0BaAhHQJXmnjYI0Il1fZQoaAZHQHIF358BuGdoB00BAWgIR0CV5u3VCojwdX2UKGgGR0Bt2iup0fYBaAdNWQFoCEdAlecffTCtR3V9lChoBkdAceIbKzRhMWgHTRABaAhHQJXo9vCMxXZ1fZQoaAZHQHDGRQN0/4ZoB00OAWgIR0CV6XRqGlANdX2UKGgGR0BwhN47ihnKaAdNQgFoCEdAlenctTUAk3V9lChoBkdAb1Rh3qzJIWgHTQwBaAhHQJXqQ7p3X7N1fZQoaAZHQFhmXjU/fO5oB03oA2gIR0CV6yfYjB2wdX2UKGgGR0BweC21D0DmaAdNDwFoCEdAletoeYD1XnV9lChoBkdAU07uVopQUGgHS/poCEdAleumJJoTPHV9lChoBkdAcBVwrDqGDmgHTS0BaAhHQJXrs0sOG0x1fZQoaAZHQHEexxDLKV9oB00tAWgIR0CV7EW69TP0dX2UKGgGR0BwifkXDWK/aAdNCwFoCEdAle1DR+jM3nV9lChoBkdAc145mh/RV2gHTa8BaAhHQJYBRMQEpy91fZQoaAZHQHFEHWWhRIloB00KAWgIR0CWAUXmvGIbdX2UKGgGR0BxV0kAxSHeaAdNTQFoCEdAlgPKeXiR4nV9lChoBkdAbAgdU83dbmgHTSABaAhHQJYGKzsyBTZ1fZQoaAZHQHCOJ/LDAJtoB02PAWgIR0CWBu8GcFyJdX2UKGgGR0BsmZH09QoDaAdNIgFoCEdAlgcb1yvLYHV9lChoBkdAcJkKQ7tAs2gHTTgBaAhHQJYJAwfyPMl1fZQoaAZHQHEGTXz19ORoB02XAWgIR0CWCWb/ffoBdX2UKGgGR0BterlDF6zFaAdNlgFoCEdAlgmsDOkcj3V9lChoBkdAcOcoysS00GgHTRcBaAhHQJYJxph4MWp1fZQoaAZHQHD5+Aqd6LRoB01OAWgIR0CWCq91U2k0dX2UKGgGR0Bw3Xd1uBMBaAdNKgFoCEdAlgr/642CNHV9lChoBkdAcg8vtMPBi2gHTTEBaAhHQJYLaLYPGyZ1fZQoaAZHQG5bKNp/PPdoB00cAWgIR0CWDPtqpLmIdX2UKGgGR0ByQ8YDTz/ZaAdNagFoCEdAlg0rkOqeb3V9lChoBkdAcDS2kzoECGgHTU8BaAhHQJYNujDbah91fZQoaAZHQHJ+mHgxagVoB01XAWgIR0CWEbDaoMrmdX2UKGgGR0BJdY8lolD4aAdL72gIR0CWEcyc0+C9dX2UKGgGR0BwcwWnCO3laAdNJwFoCEdAlhHUeU6gd3V9lChoBkdAcAPLgGbCrWgHTZgBaAhHQJYT96/qPfd1fZQoaAZHQHIZ2P91loVoB00IAWgIR0CWFDwXZXdTdX2UKGgGR0BwmIk+otL+aAdNNAFoCEdAlhRZdSl3yXV9lChoBkdAcCG0jC53DGgHTR0BaAhHQJYUvCyhSLt1fZQoaAZHQG+hkZ75VOtoB01eAWgIR0CWFUe54GD+dX2UKGgGR0BtAJvxYq5LaAdNHQFoCEdAlhY1LSNOunV9lChoBkdAcKONUwSJ0mgHTUMBaAhHQJYWoz2vjfh1fZQoaAZHQG7bT7EYO2BoB007AWgIR0CWF52IwdsBdX2UKGgGR0BwrSP+4smOaAdNGgFoCEdAlhhGV/tpmHV9lChoBkdAb9w2tMfzSWgHTWkBaAhHQJYYsEGJN0x1fZQoaAZHQHKR8rNGEwpoB01MAWgIR0CWGWKoQ4CIdX2UKGgGR0BuzPyf+S8raAdNngFoCEdAlhmr74zrNXV9lChoBkdAbyvttygf2mgHTVEBaAhHQJYZrRSgoPV1fZQoaAZHQHEewZsKsuFoB00pAWgIR0CWG9xeb/fgdX2UKGgGR0BxBSz8gpz+aAdNVgFoCEdAlh1Jt3wCsHV9lChoBkdAcsxPD50r9WgHTVwBaAhHQJYdnp/wy7B1fZQoaAZHQDF/5N47ihpoB0vdaAhHQJYd5rEcbR51fZQoaAZHQHGxoYR/ViFoB00VAWgIR0CWHgf0VafSdX2UKGgGR0Bt6ijN6gM+aAdNLgFoCEdAlh5f2saKk3V9lChoBkdAcZPKfnOjZmgHTTQBaAhHQJYepLSNOud1fZQoaAZHQHKQSz5XU6RoB01HAWgIR0CWHue3hGYsdX2UKGgGR0Bw9H8tPHktaAdNUwFoCEdAliBwYYR/VnV9lChoBkdAcO3D+zdDY2gHTQ8BaAhHQJYg9gJC0F91fZQoaAZHQHESLS7Xg+BoB00+AWgIR0CWIeyd4FA3dX2UKGgGR0BvB0z9CNS7aAdNfgFoCEdAliLRiXpnpXV9lChoBkdAb0h94NZvDWgHTUcBaAhHQJYjSfe1rqN1fZQoaAZHQHJG1uaWom5oB00xAWgIR0CWI5LhrFfidX2UKGgGR0BxMgIw/PgOaAdNOwFoCEdAliPoqPOpsHV9lChoBkdAcB729cry2GgHTRABaAhHQJYmwixFAml1fZQoaAZHQHEEvOhTOxBoB00lAWgIR0CWKBKJEYwZdX2UKGgGR0BwRfGACnxbaAdNZQFoCEdAligmaYu01XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 292,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-shlomo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8daaf1390f2efb1f13d73f99889ae4e52adcdff2bc4c5462889fff23854ae488
3
+ size 87929
ppo-LunarLander-v2-shlomo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92ea331ef4e77fe672c2dee0e8e8125ea8196d3045e5c87218d08c00c3a35a88
3
+ size 43329
ppo-LunarLander-v2-shlomo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-shlomo/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (188 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.1158858258358, "std_reward": 13.17954357039376, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-14T12:37:29.337684"}