a2c-PandaReachDense-v2 / config.json
Shridipta-06's picture
Second commit
b5860c5
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1b0f382b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1b0f18d880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688736636956957377, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkpXtPldEAbvuXuY+kpXtPldEAbvuXuY+kpXtPldEAbvuXuY+kpXtPldEAbvuXuY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiqbKvpV0kr8JHNA/+eXxPv5WS71lHQM/0QFav2SHxz+v8so/b7qgv+P2NT+Rk4A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACSle0+V0QBu+5e5j6G3zk8VDIEvI42VDySle0+V0QBu+5e5j6G3zk8VDIEvI42VDySle0+V0QBu+5e5j6G3zk8VDIEvI42VDySle0+V0QBu+5e5j6G3zk8VDIEvI42VDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.46403176 -0.00197246 0.449943 ]\n [ 0.46403176 -0.00197246 0.449943 ]\n [ 0.46403176 -0.00197246 0.449943 ]\n [ 0.46403176 -0.00197246 0.449943 ]]", "desired_goal": "[[-0.39580184 -1.1441828 1.6258556 ]\n [ 0.47245768 -0.04964351 0.5121673 ]\n [-0.8515902 1.5588193 1.5855311 ]\n [-1.2556895 0.71079844 0.25112584]]", "observation": "[[ 0.46403176 -0.00197246 0.449943 0.0113448 -0.00806864 0.01295246]\n [ 0.46403176 -0.00197246 0.449943 0.0113448 -0.00806864 0.01295246]\n [ 0.46403176 -0.00197246 0.449943 0.0113448 -0.00806864 0.01295246]\n [ 0.46403176 -0.00197246 0.449943 0.0113448 -0.00806864 0.01295246]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKEgRvoRHxj17Q8w9OhF9vVQ/eLy41VU+Nx4CPR7hk7ybRB4+uRIYvvuO6D2QPlU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14187682 0.09681609 0.09973808]\n [-0.06178401 -0.01515182 0.20882308]\n [ 0.0317671 -0.01805168 0.15455858]\n [-0.14850892 0.11355396 0.20824647]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5pXrbTNlFsCUhpRSlIwBbJRLMowBdJRHQLaIpHQQcxV1fZQoaAZoCWgPQwhGKLaCpuUHwJSGlFKUaBVLMmgWR0C2iHr+kxh2dX2UKGgGaAloD0MI2BGHbCDNEMCUhpRSlGgVSzJoFkdAtohPcUM5O3V9lChoBmgJaA9DCK8FvTeG8BvAlIaUUpRoFUsyaBZHQLaIJpwCKaZ1fZQoaAZoCWgPQwhWtg95y9ULwJSGlFKUaBVLMmgWR0C2iRD+rELqdX2UKGgGaAloD0MIc7hWe9hLE8CUhpRSlGgVSzJoFkdAtojniKiwjnV9lChoBmgJaA9DCKoQj8TLAxjAlIaUUpRoFUsyaBZHQLaIu/5+H8F1fZQoaAZoCWgPQwi309aIYGwTwJSGlFKUaBVLMmgWR0C2iJMsQNCrdX2UKGgGaAloD0MIqvOo+L9DDMCUhpRSlGgVSzJoFkdAtol6b2Dg63V9lChoBmgJaA9DCH0FacaiaQPAlIaUUpRoFUsyaBZHQLaJUPbO/tZ1fZQoaAZoCWgPQwitMeiE0MERwJSGlFKUaBVLMmgWR0C2iSVoHs1LdX2UKGgGaAloD0MIzCcrhqsDBcCUhpRSlGgVSzJoFkdAtoj8iKR+0HV9lChoBmgJaA9DCDrnpzgO/AjAlIaUUpRoFUsyaBZHQLaJ5MFlkH51fZQoaAZoCWgPQwilvFZCd2kNwJSGlFKUaBVLMmgWR0C2ibtRrJr+dX2UKGgGaAloD0MIcqd0sP5vFcCUhpRSlGgVSzJoFkdAtomPxb0OE3V9lChoBmgJaA9DCCR872/QbhDAlIaUUpRoFUsyaBZHQLaJZvl2eQN1fZQoaAZoCWgPQwioxHWMK04MwJSGlFKUaBVLMmgWR0C2ik+9i+cpdX2UKGgGaAloD0MIVvFG5pGPHcCUhpRSlGgVSzJoFkdAtoomWa+ev3V9lChoBmgJaA9DCN0m3CvzVgzAlIaUUpRoFUsyaBZHQLaJ+tZ3cHp1fZQoaAZoCWgPQwgVAU7v4h0ZwJSGlFKUaBVLMmgWR0C2idH8GcFydX2UKGgGaAloD0MIfbPNjekpDMCUhpRSlGgVSzJoFkdAtoq9QTEiuHV9lChoBmgJaA9DCBS0yeGTrgTAlIaUUpRoFUsyaBZHQLaKk8s+V1R1fZQoaAZoCWgPQwhhiQeUTdkVwJSGlFKUaBVLMmgWR0C2imhDPWxydX2UKGgGaAloD0MIgxPRr60vEsCUhpRSlGgVSzJoFkdAtoo/l8w6AHV9lChoBmgJaA9DCFTm5hvRvQfAlIaUUpRoFUsyaBZHQLaLKSwnpjd1fZQoaAZoCWgPQwiRtBt9zDcQwJSGlFKUaBVLMmgWR0C2iv+6ErXldX2UKGgGaAloD0MIDeNuEK11E8CUhpRSlGgVSzJoFkdAtorUK1G9YnV9lChoBmgJaA9DCN9rCI7LGBjAlIaUUpRoFUsyaBZHQLaKq3EQ5FR1fZQoaAZoCWgPQwjY8V8gCCASwJSGlFKUaBVLMmgWR0C2i5L74zrNdX2UKGgGaAloD0MIhV0UPfCRDMCUhpRSlGgVSzJoFkdAtotph9b5dnV9lChoBmgJaA9DCJ3aGaa29ArAlIaUUpRoFUsyaBZHQLaLPiaAnUl1fZQoaAZoCWgPQwg8SiU8oVcZwJSGlFKUaBVLMmgWR0C2ixVNpM6BdX2UKGgGaAloD0MIsI7jh0rTEMCUhpRSlGgVSzJoFkdAtowBsi0OVnV9lChoBmgJaA9DCH9N1qiHyAfAlIaUUpRoFUsyaBZHQLaL2HymQ8x1fZQoaAZoCWgPQwi9qrNaYC8JwJSGlFKUaBVLMmgWR0C2i601Mue0dX2UKGgGaAloD0MIdlJflnZKE8CUhpRSlGgVSzJoFkdAtouExsVLz3V9lChoBmgJaA9DCIXSF0LOCxPAlIaUUpRoFUsyaBZHQLaMbkp7TlV1fZQoaAZoCWgPQwjUtmEUBO8LwJSGlFKUaBVLMmgWR0C2jETVMEiddX2UKGgGaAloD0MIknpP5bQHBcCUhpRSlGgVSzJoFkdAtowZSflIVnV9lChoBmgJaA9DCMqNImsNVRHAlIaUUpRoFUsyaBZHQLaL8H6Mzdl1fZQoaAZoCWgPQwjvN9pxwy8LwJSGlFKUaBVLMmgWR0C2jNaF7D2rdX2UKGgGaAloD0MIUfcBSG1yHsCUhpRSlGgVSzJoFkdAtoytGAkLQXV9lChoBmgJaA9DCJSD2QQY9hLAlIaUUpRoFUsyaBZHQLaMgYQrc0t1fZQoaAZoCWgPQwgZ/z7jwgEKwJSGlFKUaBVLMmgWR0C2jFink1dgdX2UKGgGaAloD0MIu/JZngcHE8CUhpRSlGgVSzJoFkdAto1ykZaV2XV9lChoBmgJaA9DCHRhpBe1ixnAlIaUUpRoFUsyaBZHQLaNSWEbo8p1fZQoaAZoCWgPQwgO9FDbhpERwJSGlFKUaBVLMmgWR0C2jR4fwI+odX2UKGgGaAloD0MIRrQdU3clEsCUhpRSlGgVSzJoFkdAtoz1kpZwGXV9lChoBmgJaA9DCK98lufBXRTAlIaUUpRoFUsyaBZHQLaOIJEH+qB1fZQoaAZoCWgPQwgIVWr2QKsLwJSGlFKUaBVLMmgWR0C2jfdqxkd4dX2UKGgGaAloD0MIrYkFvqKbEMCUhpRSlGgVSzJoFkdAto3MJRfnfXV9lChoBmgJaA9DCKyL22gAjxPAlIaUUpRoFUsyaBZHQLaNo6Mir1d1fZQoaAZoCWgPQwj1EI3uILYMwJSGlFKUaBVLMmgWR0C2jtI3Jgb7dX2UKGgGaAloD0MIyhgfZi9rEMCUhpRSlGgVSzJoFkdAto6pDu0CzXV9lChoBmgJaA9DCI81I4PcxQ3AlIaUUpRoFUsyaBZHQLaOfcTakAR1fZQoaAZoCWgPQwi1FmahnRMGwJSGlFKUaBVLMmgWR0C2jlUsrd30dX2UKGgGaAloD0MITmTmApcXFMCUhpRSlGgVSzJoFkdAto+F2cJ+lXV9lChoBmgJaA9DCH5VLlT+9RLAlIaUUpRoFUsyaBZHQLaPXMERrad1fZQoaAZoCWgPQwgMPs3JiywRwJSGlFKUaBVLMmgWR0C2jzGhEjPfdX2UKGgGaAloD0MIM8UcBB3tEMCUhpRSlGgVSzJoFkdAto8JFgDzRXV9lChoBmgJaA9DCCmvldBdMgXAlIaUUpRoFUsyaBZHQLaQP6vq1PZ1fZQoaAZoCWgPQwgqyM9GrrsIwJSGlFKUaBVLMmgWR0C2kBZ9uxbCdX2UKGgGaAloD0MI2nQEcLNoFsCUhpRSlGgVSzJoFkdAto/rPBzmwXV9lChoBmgJaA9DCDGYv0LmygnAlIaUUpRoFUsyaBZHQLaPwrd30PJ1fZQoaAZoCWgPQwjOiqiJPl8UwJSGlFKUaBVLMmgWR0C2kPUfxMFmdX2UKGgGaAloD0MIaoZUUbxqDsCUhpRSlGgVSzJoFkdAtpDL/ffoBHV9lChoBmgJaA9DCLHAV3TrdQ7AlIaUUpRoFUsyaBZHQLaQoMMqjJx1fZQoaAZoCWgPQwhqFJLM6n0VwJSGlFKUaBVLMmgWR0C2kHhJ/XoUdX2UKGgGaAloD0MIyeTUzjB1BMCUhpRSlGgVSzJoFkdAtpGsJAt4A3V9lChoBmgJaA9DCHr/HydMWBrAlIaUUpRoFUsyaBZHQLaRgvw3HaN1fZQoaAZoCWgPQwjbb+1ESegLwJSGlFKUaBVLMmgWR0C2kVfmHP/rdX2UKGgGaAloD0MIZ9MRwM2iC8CUhpRSlGgVSzJoFkdAtpEvVpblinV9lChoBmgJaA9DCOgxyjMvJw7AlIaUUpRoFUsyaBZHQLaSZ6NEPUd1fZQoaAZoCWgPQwjs+ZrlsnEUwJSGlFKUaBVLMmgWR0C2kj6IvalDdX2UKGgGaAloD0MIb7ckB+xqBcCUhpRSlGgVSzJoFkdAtpITSG8Em3V9lChoBmgJaA9DCHfYRGYuoBHAlIaUUpRoFUsyaBZHQLaR6sYEW691fZQoaAZoCWgPQwgIlE25wtsLwJSGlFKUaBVLMmgWR0C2kvO9WZJDdX2UKGgGaAloD0MIuOo6VFNCGsCUhpRSlGgVSzJoFkdAtpLKRzRx+HV9lChoBmgJaA9DCIVDb/HwXhPAlIaUUpRoFUsyaBZHQLaSns1KoQ51fZQoaAZoCWgPQwhR2bCmsngQwJSGlFKUaBVLMmgWR0C2knZhBqsVdX2UKGgGaAloD0MI16TbErnwFMCUhpRSlGgVSzJoFkdAtpNfYNAkcHV9lChoBmgJaA9DCIGWrmAbkQnAlIaUUpRoFUsyaBZHQLaTNeumrKh1fZQoaAZoCWgPQwhJ8lzfhyMFwJSGlFKUaBVLMmgWR0C2kwpYYBNmdX2UKGgGaAloD0MIeZPfopMVEMCUhpRSlGgVSzJoFkdAtpLheXzDoHV9lChoBmgJaA9DCIgP7Pgv0AfAlIaUUpRoFUsyaBZHQLaTywevIOp1fZQoaAZoCWgPQwgwEATI0LEMwJSGlFKUaBVLMmgWR0C2k6GY8dPtdX2UKGgGaAloD0MIHJWbqKU5FcCUhpRSlGgVSzJoFkdAtpN2AskIHHV9lChoBmgJaA9DCDHNdK+Tug7AlIaUUpRoFUsyaBZHQLaTTS2H+Id1fZQoaAZoCWgPQwh9lBEXgLYQwJSGlFKUaBVLMmgWR0C2lDekpI+XdX2UKGgGaAloD0MIRP0ubM3WA8CUhpRSlGgVSzJoFkdAtpQOP3i71HV9lChoBmgJaA9DCAWjkjoB7Q7AlIaUUpRoFUsyaBZHQLaT4rJKaod1fZQoaAZoCWgPQwg74LpiRtgDwJSGlFKUaBVLMmgWR0C2k7nbdrO8dX2UKGgGaAloD0MIWW3+X3VkEMCUhpRSlGgVSzJoFkdAtpSk7V8TjHV9lChoBmgJaA9DCApoImx4ug3AlIaUUpRoFUsyaBZHQLaUe2pAD7t1fZQoaAZoCWgPQwhd3EYDeOsDwJSGlFKUaBVLMmgWR0C2lE/1xsEadX2UKGgGaAloD0MIrOKNzCP/E8CUhpRSlGgVSzJoFkdAtpQnFCLMtHV9lChoBmgJaA9DCP5GO2743QHAlIaUUpRoFUsyaBZHQLaVDCN0eU91fZQoaAZoCWgPQwiMhLacS5EUwJSGlFKUaBVLMmgWR0C2lOKmwaBJdX2UKGgGaAloD0MI9kArMGQVD8CUhpRSlGgVSzJoFkdAtpS3GHYYi3V9lChoBmgJaA9DCNl78UV7DBTAlIaUUpRoFUsyaBZHQLaUjkYoAn51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}