File size: 2,967 Bytes
cb200ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output

This model is a fine-tuned version of [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 14
- eval_batch_size: 14
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.03  | 10   | nan             |
| No log        | 0.06  | 20   | nan             |
| No log        | 0.08  | 30   | nan             |
| No log        | 0.11  | 40   | nan             |
| No log        | 0.14  | 50   | nan             |
| No log        | 0.17  | 60   | nan             |
| No log        | 0.2   | 70   | nan             |
| No log        | 0.23  | 80   | nan             |
| No log        | 0.25  | 90   | nan             |
| 0.9839        | 0.28  | 100  | nan             |
| 0.9839        | 0.31  | 110  | nan             |
| 0.9839        | 0.34  | 120  | nan             |
| 0.9839        | 0.37  | 130  | nan             |
| 0.9839        | 0.4   | 140  | nan             |
| 0.9839        | 0.42  | 150  | nan             |
| 0.9839        | 0.45  | 160  | nan             |
| 0.9839        | 0.48  | 170  | nan             |
| 0.9839        | 0.51  | 180  | nan             |
| 0.9839        | 0.54  | 190  | nan             |
| 0.0           | 0.56  | 200  | nan             |
| 0.0           | 0.59  | 210  | nan             |
| 0.0           | 0.62  | 220  | nan             |
| 0.0           | 0.65  | 230  | nan             |
| 0.0           | 0.68  | 240  | nan             |
| 0.0           | 0.71  | 250  | nan             |
| 0.0           | 0.73  | 260  | nan             |
| 0.0           | 0.76  | 270  | nan             |
| 0.0           | 0.79  | 280  | nan             |
| 0.0           | 0.82  | 290  | nan             |
| 0.0           | 0.85  | 300  | nan             |
| 0.0           | 0.88  | 310  | nan             |
| 0.0           | 0.9   | 320  | nan             |
| 0.0           | 0.93  | 330  | nan             |
| 0.0           | 0.96  | 340  | nan             |
| 0.0           | 0.99  | 350  | nan             |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.11.0+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2