--- license: apache-2.0 tags: - generated_from_keras_callback base_model: google-bert/bert-base-multilingual-cased model-index: - name: MindAid_Diagnosis_bert-base-multilingual-cased results: [] --- # MindAid_Diagnosis_bert-base-multilingual-cased This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4021 - Train Sparse Categorical Accuracy: 0.8656 - Validation Loss: 0.4619 - Validation Sparse Categorical Accuracy: 0.8382 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.5668 | 0.7988 | 0.5304 | 0.8254 | 0 | | 0.4556 | 0.8425 | 0.4576 | 0.8537 | 1 | | 0.4021 | 0.8656 | 0.4619 | 0.8382 | 2 | ### Framework versions - Transformers 4.41.2 - TensorFlow 2.15.0 - Datasets 2.19.2 - Tokenizers 0.19.1