import os | |
import cv2 | |
import tensorflow as tf | |
import numpy as np | |
import imageio | |
import yaml | |
from matplotlib import pyplot as plt | |
from helpers import * | |
from typing import List | |
from Loader import GridLoader | |
with open('config.yml', 'r') as config_file_obj: | |
yaml_config = yaml.safe_load(config_file_obj) | |
dataset_config = yaml_config['datasets'] | |
VIDEO_DIR = dataset_config['video_dir'] | |
ALIGNMENTS_DIR = dataset_config['alignments_dir'] | |
loader = GridLoader() | |
data = tf.data.Dataset.from_tensor_slices(loader.load_videos()) | |
# print('DATA', data) | |
# List to store filenames | |
filenames = [] | |
# Iterate over the dataset to get all filenames | |
for file_path in data: | |
filenames.append(file_path.numpy().decode("utf-8")) | |
# print(filenames) | |
data = data.shuffle(500, reshuffle_each_iteration=False) | |
data = data.map(mappable_function) | |
data = data.padded_batch(2, padded_shapes=( | |
[75, None, None, None], [40] | |
)) | |
data = data.prefetch(tf.data.AUTOTUNE) | |
# Added for split | |
train = data.take(450) | |
test = data.skip(450) | |
# print(load_data('GRID-dataset/videos/s1/briz8p.mpg')) | |
frames, alignments = data.as_numpy_iterator().next() |