File size: 3,159 Bytes
795d652 c7794dc 795d652 c7794dc 795d652 c7794dc 795d652 c7794dc 795d652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: mit
datasets:
- Silly-Machine/TuPy-Dataset
language:
- pt
pipeline_tag: text-classification
base_model: neuralmind/bert-base-portuguese-cased
widget:
- text: 'Bom dia, flor do dia!!'
model-index:
- name: Yi-34B
results:
- task:
type: text-generation
dataset:
name: ai2_arc
type: ai2_arc
metrics:
- name: AI2 Reasoning Challenge (25-Shot)
type: AI2 Reasoning Challenge (25-Shot)
value: 64.59
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
---
## Introduction
Tupi-BERT-Base is a fine-tuned BERT model designed specifically for binary classification of hate speech in Portuguese. Derived from the [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), TuPi-Base is refinde solution for addressing hate speech concerns.
For more details or specific inquiries, please refer to the [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/).
The efficacy of Language Models can exhibit notable variations when confronted with a shift in domain between training and test data. In the creation of a specialized Portuguese Language Model tailored for hate speech classification, the original BERTimbau model underwent fine-tuning processe carried out on the [TuPi Hate Speech DataSet](https://huggingface.co/datasets/FpOliveira/TuPi-Portuguese-Hate-Speech-Dataset-Binary), sourced from diverse social networks.
## Available models
| Model | Arch. | #Layers | #Params |
| ---------------------------------------- | ---------- | ------- | ------- |
| `FpOliveira/tupi-bert-base-portuguese-cased` | BERT-Base |12 |109M|
| `FpOliveira/tupi-bert-large-portuguese-cased` | BERT-Large | 24 | 334M |
| `FpOliveira/tupi-bert-base-portuguese-cased-multiclass-multilabel` | BERT-Base | 12 | 109M |
| `FpOliveira/tupi-bert-large-portuguese-cased-multiclass-multilabel` | BERT-Large | 24 | 334M |
## Example usage usage
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
import torch
import numpy as np
from scipy.special import softmax
def classify_hate_speech(model_name, text):
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name)
# Tokenize input text and prepare model input
model_input = tokenizer(text, padding=True, return_tensors="pt")
# Get model output scores
with torch.no_grad():
output = model(**model_input)
scores = softmax(output.logits.numpy(), axis=1)
ranking = np.argsort(scores[0])[::-1]
# Print the results
for i, rank in enumerate(ranking):
label = config.id2label[rank]
score = scores[0, rank]
print(f"{i + 1}) Label: {label} Score: {score:.4f}")
# Example usage
model_name = "Silly-Machine/TuPy-Bert-Large-Multilabel"
text = "Bom dia, flor do dia!!"
classify_hate_speech(model_name, text)
``` |