File size: 29,242 Bytes
f789c03 6aa86af f789c03 6aa86af f789c03 6aa86af f789c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
---
base_model: Snowflake/snowflake-arctic-embed-xs
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416298
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The radial profiles using frank for the seven targets can be seen
in Figure 6.
sentences:
- At longer radio wavelengths, we selected the newest observations of the appropriate
resolution from the VLA archive.
- The radial profiles using frank for the seven targets can be seen in Figure 6.
- For further information on observation and data calibration, refer to Hunt et al.
(2021).
- source_sentence: They are extragalactic scaled up versions of galactic Ultra Compact
(UC) H ii regions, which are typically excited by a single massive star and are
≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell, 1989).
sentences:
- They are extragalactic scaled up versions of galactic Ultra Compact (UC) H ii
regions, which are typically excited by a single massive star and are ≲less-than-or-similar-to\lesssim
0.1 pc in size (Wood & Churchwell, 1989).
- The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica,
y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA).
- We measure the detection confidence in the resolved image as the ratio between
the local mean posterior and the local posterior standard deviation of the estimated
circular polarization, evaluated based on 1000 images drawn from the posterior
distribution.
- source_sentence: The flux density calibrator was 3C286, and the complex gain calibrator
was J0836-2016.
sentences:
- The flux density calibrator was 3C286, and the complex gain calibrator was J0836-2016.
- While rcsubscript𝑟cr_{\rm c} has a clear dependence on Dmaxsubscript𝐷maxD_{\rm
max}, xMMSNsubscript𝑥MMSNx_{\rm MMSN} and tagesubscript𝑡aget_{\rm age}, ΣcsubscriptΣc\Sigma_{\rm
c} only has weak dependence on Dmaxsubscript𝐷maxD_{\rm max}, and so is mostly
sensitive to the scaling of the total initial planetesimal mass, xMMSNsubscript𝑥MMSNx_{\rm
MMSN} and tagesubscript𝑡aget_{\rm age}.
- 20 is valid only at r=rc𝑟subscript𝑟cr=r_{\rm c}, it has been shown that the surface
density of dust at r>rc𝑟subscript𝑟cr>r_{\rm c} is expected to be flat for a primordial
surface density exponent (−α𝛼-\alpha) of -3/2, or more generally proportional
to r−0.6α+0.9superscript𝑟0.6𝛼0.9r^{-0.6\alpha+0.9} (Schüppler et al., 2016; Marino
et al., 2017b; Geiler & Krivov, 2017).
- source_sentence: We would like to thank A. Deller and W. Brisken for EHT-specific
support with the use of DiFX.
sentences:
- Ice has one of the weakest strengths, and thus if we had assumed stronger solids
the derived values of Dmaxsubscript𝐷D_{\max} and xMMSNsubscript𝑥MMSNx_{\rm MMSN}
would be lower.
- We would like to thank A. Deller and W. Brisken for EHT-specific support with
the use of DiFX.
- The wsmoothsubscript𝑤smoothw_{\rm smooth} chosen parameter ranged from 10−2superscript10210^{-2}
to 10−4superscript10410^{-4} depending on the disc.
- source_sentence: New higher resolution images and our parametric modelling confirmed
this finding.
sentences:
- New higher resolution images and our parametric modelling confirmed this finding.
- With the 3-bit correlator configuration, we obtained a total bandwidth of ∼similar-to\sim8 GHz
across Ka-band.
- Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.
---
# internstall-ice-crystal-xs
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs) <!-- at revision 742da4f66e1823b5b4dbe6c320a1375a1fd85f9e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:** scraped astronomy papers at the NLP for Space Science workshop.
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SimoneAstarita/interstellar-ice-crystal-xs")
# Run inference
sentences = [
'New higher resolution images and our parametric modelling confirmed this finding.',
'New higher resolution images and our parametric modelling confirmed this finding.',
'Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
The dataset is made of scrapes papers in astronomy, including abstract, introduction and conclusions. They are divided into sentences using nklt. We then duplicate them and train using the same senrence for positive and anchor. We are using SimSCE.
#### Unnamed Dataset
* Size: 416,298 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> |
| <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> |
| <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0077 | 100 | 0.0025 |
| 0.0154 | 200 | 0.0032 |
| 0.0231 | 300 | 0.0026 |
| 0.0307 | 400 | 0.0026 |
| 0.0384 | 500 | 0.0041 |
| 0.0461 | 600 | 0.0014 |
| 0.0538 | 700 | 0.0019 |
| 0.0615 | 800 | 0.0015 |
| 0.0692 | 900 | 0.001 |
| 0.0769 | 1000 | 0.0005 |
| 0.0846 | 1100 | 0.0004 |
| 0.0922 | 1200 | 0.0013 |
| 0.0999 | 1300 | 0.0013 |
| 0.1076 | 1400 | 0.0027 |
| 0.1153 | 1500 | 0.0018 |
| 0.1230 | 1600 | 0.001 |
| 0.1307 | 1700 | 0.0014 |
| 0.1384 | 1800 | 0.0012 |
| 0.1460 | 1900 | 0.0041 |
| 0.1537 | 2000 | 0.0009 |
| 0.1614 | 2100 | 0.0005 |
| 0.1691 | 2200 | 0.0011 |
| 0.1768 | 2300 | 0.001 |
| 0.1845 | 2400 | 0.0004 |
| 0.1922 | 2500 | 0.0011 |
| 0.1998 | 2600 | 0.0044 |
| 0.2075 | 2700 | 0.0004 |
| 0.2152 | 2800 | 0.0022 |
| 0.2229 | 2900 | 0.0007 |
| 0.2306 | 3000 | 0.0006 |
| 0.2383 | 3100 | 0.0002 |
| 0.2460 | 3200 | 0.0006 |
| 0.2537 | 3300 | 0.0004 |
| 0.2613 | 3400 | 0.0013 |
| 0.2690 | 3500 | 0.0006 |
| 0.2767 | 3600 | 0.0005 |
| 0.2844 | 3700 | 0.0018 |
| 0.2921 | 3800 | 0.0023 |
| 0.2998 | 3900 | 0.0011 |
| 0.3075 | 4000 | 0.0007 |
| 0.3151 | 4100 | 0.0008 |
| 0.3228 | 4200 | 0.0013 |
| 0.3305 | 4300 | 0.0012 |
| 0.3382 | 4400 | 0.001 |
| 0.3459 | 4500 | 0.0016 |
| 0.3536 | 4600 | 0.0025 |
| 0.3613 | 4700 | 0.0015 |
| 0.3689 | 4800 | 0.0018 |
| 0.3766 | 4900 | 0.0019 |
| 0.3843 | 5000 | 0.0021 |
| 0.3920 | 5100 | 0.0018 |
| 0.3997 | 5200 | 0.0004 |
| 0.4074 | 5300 | 0.0006 |
| 0.4151 | 5400 | 0.0007 |
| 0.4228 | 5500 | 0.0009 |
| 0.4304 | 5600 | 0.0004 |
| 0.4381 | 5700 | 0.0003 |
| 0.4458 | 5800 | 0.0007 |
| 0.4535 | 5900 | 0.0013 |
| 0.4612 | 6000 | 0.0007 |
| 0.4689 | 6100 | 0.0005 |
| 0.4766 | 6200 | 0.001 |
| 0.4842 | 6300 | 0.0027 |
| 0.4919 | 6400 | 0.0018 |
| 0.4996 | 6500 | 0.0006 |
| 0.5073 | 6600 | 0.0008 |
| 0.5150 | 6700 | 0.0006 |
| 0.5227 | 6800 | 0.0007 |
| 0.5304 | 6900 | 0.001 |
| 0.5380 | 7000 | 0.0007 |
| 0.5457 | 7100 | 0.0005 |
| 0.5534 | 7200 | 0.0012 |
| 0.5611 | 7300 | 0.0012 |
| 0.5688 | 7400 | 0.0011 |
| 0.5765 | 7500 | 0.0005 |
| 0.5842 | 7600 | 0.0013 |
| 0.5919 | 7700 | 0.0012 |
| 0.5995 | 7800 | 0.0007 |
| 0.6072 | 7900 | 0.0012 |
| 0.6149 | 8000 | 0.0012 |
| 0.6226 | 8100 | 0.0003 |
| 0.6303 | 8200 | 0.0003 |
| 0.6380 | 8300 | 0.0003 |
| 0.6457 | 8400 | 0.002 |
| 0.6533 | 8500 | 0.0003 |
| 0.6610 | 8600 | 0.0016 |
| 0.6687 | 8700 | 0.0003 |
| 0.6764 | 8800 | 0.0002 |
| 0.6841 | 8900 | 0.0006 |
| 0.6918 | 9000 | 0.0005 |
| 0.6995 | 9100 | 0.0017 |
| 0.7071 | 9200 | 0.0037 |
| 0.7148 | 9300 | 0.0005 |
| 0.7225 | 9400 | 0.0006 |
| 0.7302 | 9500 | 0.0004 |
| 0.7379 | 9600 | 0.0002 |
| 0.7456 | 9700 | 0.0008 |
| 0.7533 | 9800 | 0.0005 |
| 0.7610 | 9900 | 0.0006 |
| 0.7686 | 10000 | 0.0004 |
| 0.7763 | 10100 | 0.0004 |
| 0.7840 | 10200 | 0.0006 |
| 0.7917 | 10300 | 0.0019 |
| 0.7994 | 10400 | 0.0007 |
| 0.8071 | 10500 | 0.0003 |
| 0.8148 | 10600 | 0.0003 |
| 0.8224 | 10700 | 0.0005 |
| 0.8301 | 10800 | 0.0009 |
| 0.8378 | 10900 | 0.0006 |
| 0.8455 | 11000 | 0.002 |
| 0.8532 | 11100 | 0.0018 |
| 0.8609 | 11200 | 0.0009 |
| 0.8686 | 11300 | 0.0004 |
| 0.8762 | 11400 | 0.0005 |
| 0.8839 | 11500 | 0.0008 |
| 0.8916 | 11600 | 0.0003 |
| 0.8993 | 11700 | 0.0002 |
| 0.9070 | 11800 | 0.0004 |
| 0.9147 | 11900 | 0.0007 |
| 0.9224 | 12000 | 0.0009 |
| 0.9301 | 12100 | 0.0007 |
| 0.9377 | 12200 | 0.0007 |
| 0.9454 | 12300 | 0.0009 |
| 0.9531 | 12400 | 0.0007 |
| 0.9608 | 12500 | 0.0009 |
| 0.9685 | 12600 | 0.0004 |
| 0.9762 | 12700 | 0.0002 |
| 0.9839 | 12800 | 0.0003 |
| 0.9915 | 12900 | 0.0002 |
| 0.9992 | 13000 | 0.0002 |
| 1.0069 | 13100 | 0.0006 |
| 1.0146 | 13200 | 0.0007 |
| 1.0223 | 13300 | 0.0007 |
| 1.0300 | 13400 | 0.0005 |
| 1.0377 | 13500 | 0.0008 |
| 1.0453 | 13600 | 0.0016 |
| 1.0530 | 13700 | 0.0007 |
| 1.0607 | 13800 | 0.0013 |
| 1.0684 | 13900 | 0.0005 |
| 1.0761 | 14000 | 0.0002 |
| 1.0838 | 14100 | 0.0001 |
| 1.0915 | 14200 | 0.0003 |
| 1.0992 | 14300 | 0.0003 |
| 1.1068 | 14400 | 0.0006 |
| 1.1145 | 14500 | 0.0002 |
| 1.1222 | 14600 | 0.0003 |
| 1.1299 | 14700 | 0.0002 |
| 1.1376 | 14800 | 0.0006 |
| 1.1453 | 14900 | 0.0011 |
| 1.1530 | 15000 | 0.0004 |
| 1.1606 | 15100 | 0.0001 |
| 1.1683 | 15200 | 0.0003 |
| 1.1760 | 15300 | 0.0001 |
| 1.1837 | 15400 | 0.0002 |
| 1.1914 | 15500 | 0.0001 |
| 1.1991 | 15600 | 0.003 |
| 1.2068 | 15700 | 0.0001 |
| 1.2145 | 15800 | 0.0002 |
| 1.2221 | 15900 | 0.0005 |
| 1.2298 | 16000 | 0.0004 |
| 1.2375 | 16100 | 0.0001 |
| 1.2452 | 16200 | 0.0003 |
| 1.2529 | 16300 | 0.0003 |
| 1.2606 | 16400 | 0.0008 |
| 1.2683 | 16500 | 0.0004 |
| 1.2759 | 16600 | 0.0001 |
| 1.2836 | 16700 | 0.0002 |
| 1.2913 | 16800 | 0.0011 |
| 1.2990 | 16900 | 0.0001 |
| 1.3067 | 17000 | 0.0001 |
| 1.3144 | 17100 | 0.0002 |
| 1.3221 | 17200 | 0.0005 |
| 1.3297 | 17300 | 0.0012 |
| 1.3374 | 17400 | 0.0003 |
| 1.3451 | 17500 | 0.0002 |
| 1.3528 | 17600 | 0.0009 |
| 1.3605 | 17700 | 0.0003 |
| 1.3682 | 17800 | 0.0005 |
| 1.3759 | 17900 | 0.0008 |
| 1.3836 | 18000 | 0.0005 |
| 1.3912 | 18100 | 0.0007 |
| 1.3989 | 18200 | 0.0002 |
| 1.4066 | 18300 | 0.0003 |
| 1.4143 | 18400 | 0.0002 |
| 1.4220 | 18500 | 0.0001 |
| 1.4297 | 18600 | 0.0001 |
| 1.4374 | 18700 | 0.0001 |
| 1.4450 | 18800 | 0.0005 |
| 1.4527 | 18900 | 0.0002 |
| 1.4604 | 19000 | 0.0001 |
| 1.4681 | 19100 | 0.0002 |
| 1.4758 | 19200 | 0.0006 |
| 1.4835 | 19300 | 0.0015 |
| 1.4912 | 19400 | 0.0012 |
| 1.4988 | 19500 | 0.0003 |
| 1.5065 | 19600 | 0.0005 |
| 1.5142 | 19700 | 0.0001 |
| 1.5219 | 19800 | 0.0002 |
| 1.5296 | 19900 | 0.0009 |
| 1.5373 | 20000 | 0.0002 |
| 1.5450 | 20100 | 0.0001 |
| 1.5527 | 20200 | 0.0003 |
| 1.5603 | 20300 | 0.0006 |
| 1.5680 | 20400 | 0.0002 |
| 1.5757 | 20500 | 0.0004 |
| 1.5834 | 20600 | 0.0006 |
| 1.5911 | 20700 | 0.0004 |
| 1.5988 | 20800 | 0.0002 |
| 1.6065 | 20900 | 0.0006 |
| 1.6141 | 21000 | 0.0006 |
| 1.6218 | 21100 | 0.0001 |
| 1.6295 | 21200 | 0.0001 |
| 1.6372 | 21300 | 0.0001 |
| 1.6449 | 21400 | 0.0008 |
| 1.6526 | 21500 | 0.0001 |
| 1.6603 | 21600 | 0.0005 |
| 1.6679 | 21700 | 0.0001 |
| 1.6756 | 21800 | 0.0001 |
| 1.6833 | 21900 | 0.0001 |
| 1.6910 | 22000 | 0.0001 |
| 1.6987 | 22100 | 0.0008 |
| 1.7064 | 22200 | 0.0014 |
| 1.7141 | 22300 | 0.0002 |
| 1.7218 | 22400 | 0.0007 |
| 1.7294 | 22500 | 0.0001 |
| 1.7371 | 22600 | 0.0001 |
| 1.7448 | 22700 | 0.0001 |
| 1.7525 | 22800 | 0.0002 |
| 1.7602 | 22900 | 0.0002 |
| 1.7679 | 23000 | 0.0001 |
| 1.7756 | 23100 | 0.0001 |
| 1.7832 | 23200 | 0.0005 |
| 1.7909 | 23300 | 0.0004 |
| 1.7986 | 23400 | 0.0002 |
| 1.8063 | 23500 | 0.0001 |
| 1.8140 | 23600 | 0.0001 |
| 1.8217 | 23700 | 0.0001 |
| 1.8294 | 23800 | 0.0004 |
| 1.8370 | 23900 | 0.0002 |
| 1.8447 | 24000 | 0.0002 |
| 1.8524 | 24100 | 0.0013 |
| 1.8601 | 24200 | 0.0004 |
| 1.8678 | 24300 | 0.0002 |
| 1.8755 | 24400 | 0.0002 |
| 1.8832 | 24500 | 0.0001 |
| 1.8909 | 24600 | 0.0001 |
| 1.8985 | 24700 | 0.0001 |
| 1.9062 | 24800 | 0.0002 |
| 1.9139 | 24900 | 0.0005 |
| 1.9216 | 25000 | 0.0001 |
| 1.9293 | 25100 | 0.0001 |
| 1.9370 | 25200 | 0.0002 |
| 1.9447 | 25300 | 0.0002 |
| 1.9523 | 25400 | 0.0006 |
| 1.9600 | 25500 | 0.0004 |
| 1.9677 | 25600 | 0.0002 |
| 1.9754 | 25700 | 0.0001 |
| 1.9831 | 25800 | 0.0001 |
| 1.9908 | 25900 | 0.0001 |
| 1.9985 | 26000 | 0.0001 |
| 2.0061 | 26100 | 0.0002 |
| 2.0138 | 26200 | 0.0007 |
| 2.0215 | 26300 | 0.0003 |
| 2.0292 | 26400 | 0.0001 |
| 2.0369 | 26500 | 0.0011 |
| 2.0446 | 26600 | 0.0002 |
| 2.0523 | 26700 | 0.0001 |
| 2.0600 | 26800 | 0.0002 |
| 2.0676 | 26900 | 0.0004 |
| 2.0753 | 27000 | 0.0001 |
| 2.0830 | 27100 | 0.0001 |
| 2.0907 | 27200 | 0.0001 |
| 2.0984 | 27300 | 0.0002 |
| 2.1061 | 27400 | 0.0001 |
| 2.1138 | 27500 | 0.0001 |
| 2.1214 | 27600 | 0.0001 |
| 2.1291 | 27700 | 0.0001 |
| 2.1368 | 27800 | 0.0003 |
| 2.1445 | 27900 | 0.0012 |
| 2.1522 | 28000 | 0.0001 |
| 2.1599 | 28100 | 0.0001 |
| 2.1676 | 28200 | 0.0001 |
| 2.1752 | 28300 | 0.0001 |
| 2.1829 | 28400 | 0.0001 |
| 2.1906 | 28500 | 0.0001 |
| 2.1983 | 28600 | 0.0014 |
| 2.2060 | 28700 | 0.0001 |
| 2.2137 | 28800 | 0.0001 |
| 2.2214 | 28900 | 0.0002 |
| 2.2291 | 29000 | 0.0 |
| 2.2367 | 29100 | 0.0001 |
| 2.2444 | 29200 | 0.0001 |
| 2.2521 | 29300 | 0.0001 |
| 2.2598 | 29400 | 0.0001 |
| 2.2675 | 29500 | 0.0001 |
| 2.2752 | 29600 | 0.0001 |
| 2.2829 | 29700 | 0.0001 |
| 2.2905 | 29800 | 0.0001 |
| 2.2982 | 29900 | 0.0001 |
| 2.3059 | 30000 | 0.0001 |
| 2.3136 | 30100 | 0.0001 |
| 2.3213 | 30200 | 0.0002 |
| 2.3290 | 30300 | 0.0011 |
| 2.3367 | 30400 | 0.0001 |
| 2.3444 | 30500 | 0.0001 |
| 2.3520 | 30600 | 0.0005 |
| 2.3597 | 30700 | 0.0001 |
| 2.3674 | 30800 | 0.0001 |
| 2.3751 | 30900 | 0.0006 |
| 2.3828 | 31000 | 0.0001 |
| 2.3905 | 31100 | 0.0001 |
| 2.3982 | 31200 | 0.0002 |
| 2.4058 | 31300 | 0.0001 |
| 2.4135 | 31400 | 0.0001 |
| 2.4212 | 31500 | 0.0001 |
| 2.4289 | 31600 | 0.0001 |
| 2.4366 | 31700 | 0.0001 |
| 2.4443 | 31800 | 0.0004 |
| 2.4520 | 31900 | 0.0001 |
| 2.4596 | 32000 | 0.0001 |
| 2.4673 | 32100 | 0.0002 |
| 2.4750 | 32200 | 0.0002 |
| 2.4827 | 32300 | 0.0004 |
| 2.4904 | 32400 | 0.0008 |
| 2.4981 | 32500 | 0.0001 |
| 2.5058 | 32600 | 0.0001 |
| 2.5135 | 32700 | 0.0001 |
| 2.5211 | 32800 | 0.0001 |
| 2.5288 | 32900 | 0.0006 |
| 2.5365 | 33000 | 0.0001 |
| 2.5442 | 33100 | 0.0001 |
| 2.5519 | 33200 | 0.0002 |
| 2.5596 | 33300 | 0.0001 |
| 2.5673 | 33400 | 0.0002 |
| 2.5749 | 33500 | 0.0001 |
| 2.5826 | 33600 | 0.0001 |
| 2.5903 | 33700 | 0.0001 |
| 2.5980 | 33800 | 0.0001 |
| 2.6057 | 33900 | 0.0001 |
| 2.6134 | 34000 | 0.0007 |
| 2.6211 | 34100 | 0.0 |
| 2.6287 | 34200 | 0.0001 |
| 2.6364 | 34300 | 0.0001 |
| 2.6441 | 34400 | 0.0006 |
| 2.6518 | 34500 | 0.0001 |
| 2.6595 | 34600 | 0.0001 |
| 2.6672 | 34700 | 0.0001 |
| 2.6749 | 34800 | 0.0 |
| 2.6826 | 34900 | 0.0001 |
| 2.6902 | 35000 | 0.0001 |
| 2.6979 | 35100 | 0.0005 |
| 2.7056 | 35200 | 0.0006 |
| 2.7133 | 35300 | 0.0001 |
| 2.7210 | 35400 | 0.0005 |
| 2.7287 | 35500 | 0.0001 |
| 2.7364 | 35600 | 0.0001 |
| 2.7440 | 35700 | 0.0001 |
| 2.7517 | 35800 | 0.0001 |
| 2.7594 | 35900 | 0.0001 |
| 2.7671 | 36000 | 0.0001 |
| 2.7748 | 36100 | 0.0001 |
| 2.7825 | 36200 | 0.0005 |
| 2.7902 | 36300 | 0.0001 |
| 2.7978 | 36400 | 0.0001 |
| 2.8055 | 36500 | 0.0001 |
| 2.8132 | 36600 | 0.0001 |
| 2.8209 | 36700 | 0.0001 |
| 2.8286 | 36800 | 0.0001 |
| 2.8363 | 36900 | 0.0001 |
| 2.8440 | 37000 | 0.0001 |
| 2.8517 | 37100 | 0.0013 |
| 2.8593 | 37200 | 0.0001 |
| 2.8670 | 37300 | 0.0001 |
| 2.8747 | 37400 | 0.0001 |
| 2.8824 | 37500 | 0.0001 |
| 2.8901 | 37600 | 0.0001 |
| 2.8978 | 37700 | 0.0001 |
| 2.9055 | 37800 | 0.0001 |
| 2.9131 | 37900 | 0.0002 |
| 2.9208 | 38000 | 0.0001 |
| 2.9285 | 38100 | 0.0001 |
| 2.9362 | 38200 | 0.0001 |
| 2.9439 | 38300 | 0.0001 |
| 2.9516 | 38400 | 0.0004 |
| 2.9593 | 38500 | 0.0001 |
| 2.9669 | 38600 | 0.0001 |
| 2.9746 | 38700 | 0.0001 |
| 2.9823 | 38800 | 0.0001 |
| 2.9900 | 38900 | 0.0001 |
| 2.9977 | 39000 | 0.0001 |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#Add SimSCE reference
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |