File size: 29,243 Bytes
f789c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e441550
f789c03
 
 
 
 
 
 
 
 
 
 
6aa86af
f789c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa86af
 
f789c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa86af
 
f789c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
---
base_model: Snowflake/snowflake-arctic-embed-xs
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416298
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: The radial profiles using frank for the seven targets can be seen
    in Figure 6.
  sentences:
  - At longer radio wavelengths, we selected the newest observations of the appropriate
    resolution from the VLA archive.
  - The radial profiles using frank for the seven targets can be seen in Figure 6.
  - For further information on observation and data calibration, refer to Hunt et al.
    (2021).
- source_sentence: They are extragalactic scaled up versions of galactic Ultra Compact
    (UC) Hii regions, which are typically excited by a single massive star and are
    ≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell, 1989).
  sentences:
  - They are extragalactic scaled up versions of galactic Ultra Compact (UC) Hii
    regions, which are typically excited by a single massive star and are ≲less-than-or-similar-to\lesssim
    0.1 pc in size (Wood & Churchwell, 1989).
  - The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica,
    y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA).
  - We measure the detection confidence in the resolved image as the ratio between
    the local mean posterior and the local posterior standard deviation of the estimated
    circular polarization, evaluated based on 1000 images drawn from the posterior
    distribution.
- source_sentence: The flux density calibrator was 3C286, and the complex gain calibrator
    was J0836-2016.
  sentences:
  - The flux density calibrator was 3C286, and the complex gain calibrator was J0836-2016.
  - While rcsubscript𝑟cr_{\rm c} has a clear dependence on Dmaxsubscript𝐷maxD_{\rm
    max}, xMMSNsubscript𝑥MMSNx_{\rm MMSN} and tagesubscript𝑡aget_{\rm age}, ΣcsubscriptΣc\Sigma_{\rm
    c} only has weak dependence on Dmaxsubscript𝐷maxD_{\rm max}, and so is mostly
    sensitive to the scaling of the total initial planetesimal mass, xMMSNsubscript𝑥MMSNx_{\rm
    MMSN} and tagesubscript𝑡aget_{\rm age}.
  - 20 is valid only at r=rc𝑟subscript𝑟cr=r_{\rm c}, it has been shown that the surface
    density of dust at r>rc𝑟subscript𝑟cr>r_{\rm c} is expected to be flat for a primordial
    surface density exponent (−α𝛼-\alpha) of -3/2, or more generally proportional
    to r−0.6​α+0.9superscript𝑟0.6𝛼0.9r^{-0.6\alpha+0.9} (Schüppler et al., 2016; Marino
    et al., 2017b; Geiler & Krivov, 2017).
- source_sentence: We would like to thank A. Deller and W. Brisken for EHT-specific
    support with the use of DiFX.
  sentences:
  - Ice has one of the weakest strengths, and thus if we had assumed stronger solids
    the derived values of Dmaxsubscript𝐷D_{\max} and xMMSNsubscript𝑥MMSNx_{\rm MMSN}
    would be lower.
  - We would like to thank A. Deller and W. Brisken for EHT-specific support with
    the use of DiFX.
  - The wsmoothsubscript𝑤smoothw_{\rm smooth} chosen parameter ranged from 10−2superscript10210^{-2}
    to 10−4superscript10410^{-4} depending on the disc.
- source_sentence: New higher resolution images and our parametric modelling confirmed
    this finding.
  sentences:
  - New higher resolution images and our parametric modelling confirmed this finding.
  - With the 3-bit correlator configuration, we obtained a total bandwidth of ∼similar-to\sim8GHz
    across Ka-band.
  - Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.
---

# interstellar-ice-crystal-xs

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs) <!-- at revision 742da4f66e1823b5b4dbe6c320a1375a1fd85f9e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:** scraped astronomy papers at the NLP for Space Science workshop.
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("SimoneAstarita/interstellar-ice-crystal-xs")
# Run inference
sentences = [
    'New higher resolution images and our parametric modelling confirmed this finding.',
    'New higher resolution images and our parametric modelling confirmed this finding.',
    'Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

The dataset is made of scrapes papers in astronomy, including abstract, introduction and conclusions. They are divided into sentences using nklt. We then duplicate them and train using the same senrence for positive and anchor. We are using SimSCE.

#### Unnamed Dataset


* Size: 416,298 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                               | positive                                                                                                                                                             |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code>                                                                    | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code>                                                                    |
  | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> |
  | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code>                | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code>                |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0077 | 100   | 0.0025        |
| 0.0154 | 200   | 0.0032        |
| 0.0231 | 300   | 0.0026        |
| 0.0307 | 400   | 0.0026        |
| 0.0384 | 500   | 0.0041        |
| 0.0461 | 600   | 0.0014        |
| 0.0538 | 700   | 0.0019        |
| 0.0615 | 800   | 0.0015        |
| 0.0692 | 900   | 0.001         |
| 0.0769 | 1000  | 0.0005        |
| 0.0846 | 1100  | 0.0004        |
| 0.0922 | 1200  | 0.0013        |
| 0.0999 | 1300  | 0.0013        |
| 0.1076 | 1400  | 0.0027        |
| 0.1153 | 1500  | 0.0018        |
| 0.1230 | 1600  | 0.001         |
| 0.1307 | 1700  | 0.0014        |
| 0.1384 | 1800  | 0.0012        |
| 0.1460 | 1900  | 0.0041        |
| 0.1537 | 2000  | 0.0009        |
| 0.1614 | 2100  | 0.0005        |
| 0.1691 | 2200  | 0.0011        |
| 0.1768 | 2300  | 0.001         |
| 0.1845 | 2400  | 0.0004        |
| 0.1922 | 2500  | 0.0011        |
| 0.1998 | 2600  | 0.0044        |
| 0.2075 | 2700  | 0.0004        |
| 0.2152 | 2800  | 0.0022        |
| 0.2229 | 2900  | 0.0007        |
| 0.2306 | 3000  | 0.0006        |
| 0.2383 | 3100  | 0.0002        |
| 0.2460 | 3200  | 0.0006        |
| 0.2537 | 3300  | 0.0004        |
| 0.2613 | 3400  | 0.0013        |
| 0.2690 | 3500  | 0.0006        |
| 0.2767 | 3600  | 0.0005        |
| 0.2844 | 3700  | 0.0018        |
| 0.2921 | 3800  | 0.0023        |
| 0.2998 | 3900  | 0.0011        |
| 0.3075 | 4000  | 0.0007        |
| 0.3151 | 4100  | 0.0008        |
| 0.3228 | 4200  | 0.0013        |
| 0.3305 | 4300  | 0.0012        |
| 0.3382 | 4400  | 0.001         |
| 0.3459 | 4500  | 0.0016        |
| 0.3536 | 4600  | 0.0025        |
| 0.3613 | 4700  | 0.0015        |
| 0.3689 | 4800  | 0.0018        |
| 0.3766 | 4900  | 0.0019        |
| 0.3843 | 5000  | 0.0021        |
| 0.3920 | 5100  | 0.0018        |
| 0.3997 | 5200  | 0.0004        |
| 0.4074 | 5300  | 0.0006        |
| 0.4151 | 5400  | 0.0007        |
| 0.4228 | 5500  | 0.0009        |
| 0.4304 | 5600  | 0.0004        |
| 0.4381 | 5700  | 0.0003        |
| 0.4458 | 5800  | 0.0007        |
| 0.4535 | 5900  | 0.0013        |
| 0.4612 | 6000  | 0.0007        |
| 0.4689 | 6100  | 0.0005        |
| 0.4766 | 6200  | 0.001         |
| 0.4842 | 6300  | 0.0027        |
| 0.4919 | 6400  | 0.0018        |
| 0.4996 | 6500  | 0.0006        |
| 0.5073 | 6600  | 0.0008        |
| 0.5150 | 6700  | 0.0006        |
| 0.5227 | 6800  | 0.0007        |
| 0.5304 | 6900  | 0.001         |
| 0.5380 | 7000  | 0.0007        |
| 0.5457 | 7100  | 0.0005        |
| 0.5534 | 7200  | 0.0012        |
| 0.5611 | 7300  | 0.0012        |
| 0.5688 | 7400  | 0.0011        |
| 0.5765 | 7500  | 0.0005        |
| 0.5842 | 7600  | 0.0013        |
| 0.5919 | 7700  | 0.0012        |
| 0.5995 | 7800  | 0.0007        |
| 0.6072 | 7900  | 0.0012        |
| 0.6149 | 8000  | 0.0012        |
| 0.6226 | 8100  | 0.0003        |
| 0.6303 | 8200  | 0.0003        |
| 0.6380 | 8300  | 0.0003        |
| 0.6457 | 8400  | 0.002         |
| 0.6533 | 8500  | 0.0003        |
| 0.6610 | 8600  | 0.0016        |
| 0.6687 | 8700  | 0.0003        |
| 0.6764 | 8800  | 0.0002        |
| 0.6841 | 8900  | 0.0006        |
| 0.6918 | 9000  | 0.0005        |
| 0.6995 | 9100  | 0.0017        |
| 0.7071 | 9200  | 0.0037        |
| 0.7148 | 9300  | 0.0005        |
| 0.7225 | 9400  | 0.0006        |
| 0.7302 | 9500  | 0.0004        |
| 0.7379 | 9600  | 0.0002        |
| 0.7456 | 9700  | 0.0008        |
| 0.7533 | 9800  | 0.0005        |
| 0.7610 | 9900  | 0.0006        |
| 0.7686 | 10000 | 0.0004        |
| 0.7763 | 10100 | 0.0004        |
| 0.7840 | 10200 | 0.0006        |
| 0.7917 | 10300 | 0.0019        |
| 0.7994 | 10400 | 0.0007        |
| 0.8071 | 10500 | 0.0003        |
| 0.8148 | 10600 | 0.0003        |
| 0.8224 | 10700 | 0.0005        |
| 0.8301 | 10800 | 0.0009        |
| 0.8378 | 10900 | 0.0006        |
| 0.8455 | 11000 | 0.002         |
| 0.8532 | 11100 | 0.0018        |
| 0.8609 | 11200 | 0.0009        |
| 0.8686 | 11300 | 0.0004        |
| 0.8762 | 11400 | 0.0005        |
| 0.8839 | 11500 | 0.0008        |
| 0.8916 | 11600 | 0.0003        |
| 0.8993 | 11700 | 0.0002        |
| 0.9070 | 11800 | 0.0004        |
| 0.9147 | 11900 | 0.0007        |
| 0.9224 | 12000 | 0.0009        |
| 0.9301 | 12100 | 0.0007        |
| 0.9377 | 12200 | 0.0007        |
| 0.9454 | 12300 | 0.0009        |
| 0.9531 | 12400 | 0.0007        |
| 0.9608 | 12500 | 0.0009        |
| 0.9685 | 12600 | 0.0004        |
| 0.9762 | 12700 | 0.0002        |
| 0.9839 | 12800 | 0.0003        |
| 0.9915 | 12900 | 0.0002        |
| 0.9992 | 13000 | 0.0002        |
| 1.0069 | 13100 | 0.0006        |
| 1.0146 | 13200 | 0.0007        |
| 1.0223 | 13300 | 0.0007        |
| 1.0300 | 13400 | 0.0005        |
| 1.0377 | 13500 | 0.0008        |
| 1.0453 | 13600 | 0.0016        |
| 1.0530 | 13700 | 0.0007        |
| 1.0607 | 13800 | 0.0013        |
| 1.0684 | 13900 | 0.0005        |
| 1.0761 | 14000 | 0.0002        |
| 1.0838 | 14100 | 0.0001        |
| 1.0915 | 14200 | 0.0003        |
| 1.0992 | 14300 | 0.0003        |
| 1.1068 | 14400 | 0.0006        |
| 1.1145 | 14500 | 0.0002        |
| 1.1222 | 14600 | 0.0003        |
| 1.1299 | 14700 | 0.0002        |
| 1.1376 | 14800 | 0.0006        |
| 1.1453 | 14900 | 0.0011        |
| 1.1530 | 15000 | 0.0004        |
| 1.1606 | 15100 | 0.0001        |
| 1.1683 | 15200 | 0.0003        |
| 1.1760 | 15300 | 0.0001        |
| 1.1837 | 15400 | 0.0002        |
| 1.1914 | 15500 | 0.0001        |
| 1.1991 | 15600 | 0.003         |
| 1.2068 | 15700 | 0.0001        |
| 1.2145 | 15800 | 0.0002        |
| 1.2221 | 15900 | 0.0005        |
| 1.2298 | 16000 | 0.0004        |
| 1.2375 | 16100 | 0.0001        |
| 1.2452 | 16200 | 0.0003        |
| 1.2529 | 16300 | 0.0003        |
| 1.2606 | 16400 | 0.0008        |
| 1.2683 | 16500 | 0.0004        |
| 1.2759 | 16600 | 0.0001        |
| 1.2836 | 16700 | 0.0002        |
| 1.2913 | 16800 | 0.0011        |
| 1.2990 | 16900 | 0.0001        |
| 1.3067 | 17000 | 0.0001        |
| 1.3144 | 17100 | 0.0002        |
| 1.3221 | 17200 | 0.0005        |
| 1.3297 | 17300 | 0.0012        |
| 1.3374 | 17400 | 0.0003        |
| 1.3451 | 17500 | 0.0002        |
| 1.3528 | 17600 | 0.0009        |
| 1.3605 | 17700 | 0.0003        |
| 1.3682 | 17800 | 0.0005        |
| 1.3759 | 17900 | 0.0008        |
| 1.3836 | 18000 | 0.0005        |
| 1.3912 | 18100 | 0.0007        |
| 1.3989 | 18200 | 0.0002        |
| 1.4066 | 18300 | 0.0003        |
| 1.4143 | 18400 | 0.0002        |
| 1.4220 | 18500 | 0.0001        |
| 1.4297 | 18600 | 0.0001        |
| 1.4374 | 18700 | 0.0001        |
| 1.4450 | 18800 | 0.0005        |
| 1.4527 | 18900 | 0.0002        |
| 1.4604 | 19000 | 0.0001        |
| 1.4681 | 19100 | 0.0002        |
| 1.4758 | 19200 | 0.0006        |
| 1.4835 | 19300 | 0.0015        |
| 1.4912 | 19400 | 0.0012        |
| 1.4988 | 19500 | 0.0003        |
| 1.5065 | 19600 | 0.0005        |
| 1.5142 | 19700 | 0.0001        |
| 1.5219 | 19800 | 0.0002        |
| 1.5296 | 19900 | 0.0009        |
| 1.5373 | 20000 | 0.0002        |
| 1.5450 | 20100 | 0.0001        |
| 1.5527 | 20200 | 0.0003        |
| 1.5603 | 20300 | 0.0006        |
| 1.5680 | 20400 | 0.0002        |
| 1.5757 | 20500 | 0.0004        |
| 1.5834 | 20600 | 0.0006        |
| 1.5911 | 20700 | 0.0004        |
| 1.5988 | 20800 | 0.0002        |
| 1.6065 | 20900 | 0.0006        |
| 1.6141 | 21000 | 0.0006        |
| 1.6218 | 21100 | 0.0001        |
| 1.6295 | 21200 | 0.0001        |
| 1.6372 | 21300 | 0.0001        |
| 1.6449 | 21400 | 0.0008        |
| 1.6526 | 21500 | 0.0001        |
| 1.6603 | 21600 | 0.0005        |
| 1.6679 | 21700 | 0.0001        |
| 1.6756 | 21800 | 0.0001        |
| 1.6833 | 21900 | 0.0001        |
| 1.6910 | 22000 | 0.0001        |
| 1.6987 | 22100 | 0.0008        |
| 1.7064 | 22200 | 0.0014        |
| 1.7141 | 22300 | 0.0002        |
| 1.7218 | 22400 | 0.0007        |
| 1.7294 | 22500 | 0.0001        |
| 1.7371 | 22600 | 0.0001        |
| 1.7448 | 22700 | 0.0001        |
| 1.7525 | 22800 | 0.0002        |
| 1.7602 | 22900 | 0.0002        |
| 1.7679 | 23000 | 0.0001        |
| 1.7756 | 23100 | 0.0001        |
| 1.7832 | 23200 | 0.0005        |
| 1.7909 | 23300 | 0.0004        |
| 1.7986 | 23400 | 0.0002        |
| 1.8063 | 23500 | 0.0001        |
| 1.8140 | 23600 | 0.0001        |
| 1.8217 | 23700 | 0.0001        |
| 1.8294 | 23800 | 0.0004        |
| 1.8370 | 23900 | 0.0002        |
| 1.8447 | 24000 | 0.0002        |
| 1.8524 | 24100 | 0.0013        |
| 1.8601 | 24200 | 0.0004        |
| 1.8678 | 24300 | 0.0002        |
| 1.8755 | 24400 | 0.0002        |
| 1.8832 | 24500 | 0.0001        |
| 1.8909 | 24600 | 0.0001        |
| 1.8985 | 24700 | 0.0001        |
| 1.9062 | 24800 | 0.0002        |
| 1.9139 | 24900 | 0.0005        |
| 1.9216 | 25000 | 0.0001        |
| 1.9293 | 25100 | 0.0001        |
| 1.9370 | 25200 | 0.0002        |
| 1.9447 | 25300 | 0.0002        |
| 1.9523 | 25400 | 0.0006        |
| 1.9600 | 25500 | 0.0004        |
| 1.9677 | 25600 | 0.0002        |
| 1.9754 | 25700 | 0.0001        |
| 1.9831 | 25800 | 0.0001        |
| 1.9908 | 25900 | 0.0001        |
| 1.9985 | 26000 | 0.0001        |
| 2.0061 | 26100 | 0.0002        |
| 2.0138 | 26200 | 0.0007        |
| 2.0215 | 26300 | 0.0003        |
| 2.0292 | 26400 | 0.0001        |
| 2.0369 | 26500 | 0.0011        |
| 2.0446 | 26600 | 0.0002        |
| 2.0523 | 26700 | 0.0001        |
| 2.0600 | 26800 | 0.0002        |
| 2.0676 | 26900 | 0.0004        |
| 2.0753 | 27000 | 0.0001        |
| 2.0830 | 27100 | 0.0001        |
| 2.0907 | 27200 | 0.0001        |
| 2.0984 | 27300 | 0.0002        |
| 2.1061 | 27400 | 0.0001        |
| 2.1138 | 27500 | 0.0001        |
| 2.1214 | 27600 | 0.0001        |
| 2.1291 | 27700 | 0.0001        |
| 2.1368 | 27800 | 0.0003        |
| 2.1445 | 27900 | 0.0012        |
| 2.1522 | 28000 | 0.0001        |
| 2.1599 | 28100 | 0.0001        |
| 2.1676 | 28200 | 0.0001        |
| 2.1752 | 28300 | 0.0001        |
| 2.1829 | 28400 | 0.0001        |
| 2.1906 | 28500 | 0.0001        |
| 2.1983 | 28600 | 0.0014        |
| 2.2060 | 28700 | 0.0001        |
| 2.2137 | 28800 | 0.0001        |
| 2.2214 | 28900 | 0.0002        |
| 2.2291 | 29000 | 0.0           |
| 2.2367 | 29100 | 0.0001        |
| 2.2444 | 29200 | 0.0001        |
| 2.2521 | 29300 | 0.0001        |
| 2.2598 | 29400 | 0.0001        |
| 2.2675 | 29500 | 0.0001        |
| 2.2752 | 29600 | 0.0001        |
| 2.2829 | 29700 | 0.0001        |
| 2.2905 | 29800 | 0.0001        |
| 2.2982 | 29900 | 0.0001        |
| 2.3059 | 30000 | 0.0001        |
| 2.3136 | 30100 | 0.0001        |
| 2.3213 | 30200 | 0.0002        |
| 2.3290 | 30300 | 0.0011        |
| 2.3367 | 30400 | 0.0001        |
| 2.3444 | 30500 | 0.0001        |
| 2.3520 | 30600 | 0.0005        |
| 2.3597 | 30700 | 0.0001        |
| 2.3674 | 30800 | 0.0001        |
| 2.3751 | 30900 | 0.0006        |
| 2.3828 | 31000 | 0.0001        |
| 2.3905 | 31100 | 0.0001        |
| 2.3982 | 31200 | 0.0002        |
| 2.4058 | 31300 | 0.0001        |
| 2.4135 | 31400 | 0.0001        |
| 2.4212 | 31500 | 0.0001        |
| 2.4289 | 31600 | 0.0001        |
| 2.4366 | 31700 | 0.0001        |
| 2.4443 | 31800 | 0.0004        |
| 2.4520 | 31900 | 0.0001        |
| 2.4596 | 32000 | 0.0001        |
| 2.4673 | 32100 | 0.0002        |
| 2.4750 | 32200 | 0.0002        |
| 2.4827 | 32300 | 0.0004        |
| 2.4904 | 32400 | 0.0008        |
| 2.4981 | 32500 | 0.0001        |
| 2.5058 | 32600 | 0.0001        |
| 2.5135 | 32700 | 0.0001        |
| 2.5211 | 32800 | 0.0001        |
| 2.5288 | 32900 | 0.0006        |
| 2.5365 | 33000 | 0.0001        |
| 2.5442 | 33100 | 0.0001        |
| 2.5519 | 33200 | 0.0002        |
| 2.5596 | 33300 | 0.0001        |
| 2.5673 | 33400 | 0.0002        |
| 2.5749 | 33500 | 0.0001        |
| 2.5826 | 33600 | 0.0001        |
| 2.5903 | 33700 | 0.0001        |
| 2.5980 | 33800 | 0.0001        |
| 2.6057 | 33900 | 0.0001        |
| 2.6134 | 34000 | 0.0007        |
| 2.6211 | 34100 | 0.0           |
| 2.6287 | 34200 | 0.0001        |
| 2.6364 | 34300 | 0.0001        |
| 2.6441 | 34400 | 0.0006        |
| 2.6518 | 34500 | 0.0001        |
| 2.6595 | 34600 | 0.0001        |
| 2.6672 | 34700 | 0.0001        |
| 2.6749 | 34800 | 0.0           |
| 2.6826 | 34900 | 0.0001        |
| 2.6902 | 35000 | 0.0001        |
| 2.6979 | 35100 | 0.0005        |
| 2.7056 | 35200 | 0.0006        |
| 2.7133 | 35300 | 0.0001        |
| 2.7210 | 35400 | 0.0005        |
| 2.7287 | 35500 | 0.0001        |
| 2.7364 | 35600 | 0.0001        |
| 2.7440 | 35700 | 0.0001        |
| 2.7517 | 35800 | 0.0001        |
| 2.7594 | 35900 | 0.0001        |
| 2.7671 | 36000 | 0.0001        |
| 2.7748 | 36100 | 0.0001        |
| 2.7825 | 36200 | 0.0005        |
| 2.7902 | 36300 | 0.0001        |
| 2.7978 | 36400 | 0.0001        |
| 2.8055 | 36500 | 0.0001        |
| 2.8132 | 36600 | 0.0001        |
| 2.8209 | 36700 | 0.0001        |
| 2.8286 | 36800 | 0.0001        |
| 2.8363 | 36900 | 0.0001        |
| 2.8440 | 37000 | 0.0001        |
| 2.8517 | 37100 | 0.0013        |
| 2.8593 | 37200 | 0.0001        |
| 2.8670 | 37300 | 0.0001        |
| 2.8747 | 37400 | 0.0001        |
| 2.8824 | 37500 | 0.0001        |
| 2.8901 | 37600 | 0.0001        |
| 2.8978 | 37700 | 0.0001        |
| 2.9055 | 37800 | 0.0001        |
| 2.9131 | 37900 | 0.0002        |
| 2.9208 | 38000 | 0.0001        |
| 2.9285 | 38100 | 0.0001        |
| 2.9362 | 38200 | 0.0001        |
| 2.9439 | 38300 | 0.0001        |
| 2.9516 | 38400 | 0.0004        |
| 2.9593 | 38500 | 0.0001        |
| 2.9669 | 38600 | 0.0001        |
| 2.9746 | 38700 | 0.0001        |
| 2.9823 | 38800 | 0.0001        |
| 2.9900 | 38900 | 0.0001        |
| 2.9977 | 39000 | 0.0001        |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#Add SimSCE reference

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->