--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - common_voice_17_0 model-index: - name: fine_tuned_sample results: [] --- # fine_tuned_sample This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2918 | 1.0 | 1728 | 1.1855 | | 0.8603 | 2.0 | 3456 | 0.6720 | | 0.4763 | 3.0 | 5184 | 0.3180 | | 0.1549 | 4.0 | 6912 | 0.1107 | ### Framework versions - PEFT 0.13.3.dev0 - Transformers 4.47.0.dev0 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1