--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Medium Hi - Amarjeet results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: hi split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 23.48751501097354 --- # Whisper Medium Hi - Amarjeet This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3223 - Wer: 23.4875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0546 | 2.3641 | 1000 | 0.2291 | 26.3406 | | 0.0124 | 4.7281 | 2000 | 0.2662 | 24.4275 | | 0.0007 | 7.0922 | 3000 | 0.3053 | 23.8147 | | 0.0001 | 9.4563 | 4000 | 0.3223 | 23.4875 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0