Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.47 +/- 19.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4561bea0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4561bea160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4561bea1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4561bea280>", "_build": "<function ActorCriticPolicy._build at 0x7f4561bea310>", "forward": "<function ActorCriticPolicy.forward at 0x7f4561bea3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4561bea430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4561bea4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4561bea550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4561bea5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4561bea670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4561be8180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673133391344438950, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPZkr08lac/N6s1v3q/zL66tYc9khb5PQAAAAAAAAAATYVHPVCwtj57sB69CRQ7vjMObT2wP1W9AAAAAAAAAACA/7c9UtjGOLJjXbl8hs0zqhtAui/xhTgAAIA/AACAP5rtKzwUroa6jVp4u+WCdTjAlgq79qkIOgAAgD8AAIA/xtRiPjd6Ij/DHpS8lHbwvUTYkj1lRdw9AAAAAAAAAABmzhy7KbBputZOLrqvZlC1bNEcujbDSzkAAIA/AACAP80iu73DqRa6LqBPOcvwlDTZjKo7HR52uAAAgD8AAIA/TYQVPTx9qz8Tn0c+/FBBvrWZWT3a8nY9AAAAAAAAAADN+rY8KVA2ulOxlTt3xQs2QmzBOtaasboAAIA/AACAP00Saz2Pdle6fkGKuqvyRzRrDom7+tyfOQAAgD8AAIA/ZmY2t6RAPbld5bG2RAMPshq/YjuqQdk1AACAPwAAgD9z2YQ99jhAugJmY7maySkzMoSkuykvhDgAAIA/AACAPxqDRz7xQGw+LrkkvnIQX76sNhW92+tDvQAAAAAAAAAAs40NPfakaro+2as6ImULNC2pi7s/7Ma5AACAPwAAgD+a4EO9XBNouvPrVbrNoFK1J7J+OpMjezkAAIA/AACAP/PLzr1yF6E+7km+PcqtX741yP88c6/ZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGhajrvW4cUCUhpRSlIwBbJRNXgKMAXSUR0CUOu4wh4dIdX2UKGgGaAloD0MIdAtdicBeY0CUhpRSlGgVTegDaBZHQJQ7UBBAv+R1fZQoaAZoCWgPQwi1U3O5QRxlQJSGlFKUaBVN6ANoFkdAlD5T7Q9idHV9lChoBmgJaA9DCOF86lglrWJAlIaUUpRoFU3oA2gWR0CUQZvOhTOxdX2UKGgGaAloD0MIkWKARBOLZECUhpRSlGgVTegDaBZHQJRLgFPi1iR1fZQoaAZoCWgPQwjtuyL43xxdQJSGlFKUaBVN6ANoFkdAlFIyPMjeK3V9lChoBmgJaA9DCL72zJIAw2BAlIaUUpRoFU3oA2gWR0CUZoqR2bG4dX2UKGgGaAloD0MI8rbSazPYYECUhpRSlGgVTegDaBZHQJRoJEnb7CV1fZQoaAZoCWgPQwh+dOrK56JjQJSGlFKUaBVN6ANoFkdAlGx9BfKISHV9lChoBmgJaA9DCFfRH5r5w2NAlIaUUpRoFU3oA2gWR0CUcaAy2x6fdX2UKGgGaAloD0MIh4vc01UrYkCUhpRSlGgVTegDaBZHQJRzDcYZVGV1fZQoaAZoCWgPQwgFjC5vDkdhQJSGlFKUaBVN6ANoFkdAlHgoRVZLZnV9lChoBmgJaA9DCNOHLqhvFWZAlIaUUpRoFU3oA2gWR0CUeQB1s+FDdX2UKGgGaAloD0MIJ9pVSHmgYkCUhpRSlGgVTegDaBZHQJR52L/CIk91fZQoaAZoCWgPQwim1CXjmGthQJSGlFKUaBVN6ANoFkdAlJIwBLf1pXV9lChoBmgJaA9DCBuADYiQzWBAlIaUUpRoFU3oA2gWR0CUkzr56+nJdX2UKGgGaAloD0MIuVFkraEBWkCUhpRSlGgVTegDaBZHQJSUjYWcjJN1fZQoaAZoCWgPQwhH5/wUR2BjQJSGlFKUaBVN6ANoFkdAlJT82NvOyHV9lChoBmgJaA9DCONPVDasJV1AlIaUUpRoFU3oA2gWR0CUmF+kgwGodX2UKGgGaAloD0MI/YSzW8vdXUCUhpRSlGgVTegDaBZHQJSb20WuX/p1fZQoaAZoCWgPQwhhjEgUWiBfQJSGlFKUaBVN6ANoFkdAlKTxmK64D3V9lChoBmgJaA9DCMf17/pM+GVAlIaUUpRoFU3oA2gWR0CUqvN7SiM6dX2UKGgGaAloD0MIRKM7iB0hY0CUhpRSlGgVTegDaBZHQJTAj2pQ1rJ1fZQoaAZoCWgPQwhEMA4uHaxgQJSGlFKUaBVN6ANoFkdAlMJ8ynDR+nV9lChoBmgJaA9DCMDQI0bPDl1AlIaUUpRoFU3oA2gWR0CUxlE3sHB2dX2UKGgGaAloD0MINiGtMeg4ZUCUhpRSlGgVTegDaBZHQJTKpP2wmmd1fZQoaAZoCWgPQwjzHJHvUkBdQJSGlFKUaBVN6ANoFkdAlMvdLQHAynV9lChoBmgJaA9DCEPmyqBaRmNAlIaUUpRoFU3oA2gWR0CU0C4mCyyEdX2UKGgGaAloD0MIHEEqxY65ZUCUhpRSlGgVTegDaBZHQJTQ5aGHpKV1fZQoaAZoCWgPQwg01v7O9jBaQJSGlFKUaBVN6ANoFkdAlNGnBYV6/3V9lChoBmgJaA9DCBX/d0SF6GNAlIaUUpRoFU3oA2gWR0CU6Y1ejVQRdX2UKGgGaAloD0MImrM+5ZgVYUCUhpRSlGgVTegDaBZHQJTqd3FDOTt1fZQoaAZoCWgPQwijeQCLfKpkQJSGlFKUaBVN6ANoFkdAlOumLgn+h3V9lChoBmgJaA9DCJ2gTQ6fBFxAlIaUUpRoFU3oA2gWR0CU7A4FA3UAdX2UKGgGaAloD0MIFqHYChoCY0CUhpRSlGgVTegDaBZHQJTvPJ0W/Jx1fZQoaAZoCWgPQwhd/G1PEKRgQJSGlFKUaBVN6ANoFkdAlPLAgTyrgnV9lChoBmgJaA9DCDtREhJpBGFAlIaUUpRoFU3oA2gWR0CU/IZKnNxEdX2UKGgGaAloD0MI78UX7XGOZUCUhpRSlGgVTegDaBZHQJUC2eWfK6p1fZQoaAZoCWgPQwhTliGO9dpuQJSGlFKUaBVNdANoFkdAlQxMxKxs23V9lChoBmgJaA9DCBGQL6ECNGJAlIaUUpRoFU3oA2gWR0CVFm/zreImdX2UKGgGaAloD0MIz582qtMOXECUhpRSlGgVTegDaBZHQJUaVJK8L8d1fZQoaAZoCWgPQwjuWkI+aNlhQJSGlFKUaBVN6ANoFkdAlR9JkTYdyXV9lChoBmgJaA9DCHLcKR2sGGJAlIaUUpRoFU3oA2gWR0CVIKZ39rGjdX2UKGgGaAloD0MIqvQTzm5pYECUhpRSlGgVTegDaBZHQJUlugwoLG91fZQoaAZoCWgPQwgz3IDPDwpZQJSGlFKUaBVN6ANoFkdAlSaSV8kUsXV9lChoBmgJaA9DCCLeOv/25mFAlIaUUpRoFU3oA2gWR0CVJ3g0TDfndX2UKGgGaAloD0MIhlW8kXnEXECUhpRSlGgVTegDaBZHQJU/wOAiFCd1fZQoaAZoCWgPQwhUVtP1RGJeQJSGlFKUaBVN6ANoFkdAlUC/L5h0AHV9lChoBmgJaA9DCK5i8ZvCgmNAlIaUUpRoFU3oA2gWR0CVQgRCx/utdX2UKGgGaAloD0MIlx5N9WRjZUCUhpRSlGgVTegDaBZHQJVCebd8ArB1fZQoaAZoCWgPQwglPneC/adiQJSGlFKUaBVN6ANoFkdAlUWw/xDst3V9lChoBmgJaA9DCAWlaOXeRWJAlIaUUpRoFU3oA2gWR0CVSR9m6GxmdX2UKGgGaAloD0MI5gRtcvjYYkCUhpRSlGgVTegDaBZHQJVS7JPqLTB1fZQoaAZoCWgPQwi5NlSM8+5rQJSGlFKUaBVNnwFoFkdAlVND3AVO9HV9lChoBmgJaA9DCNDSFWwjMV1AlIaUUpRoFU3oA2gWR0CVWMwjdHlPdX2UKGgGaAloD0MIV3xD4bP1XECUhpRSlGgVTegDaBZHQJVhkyvcJt11fZQoaAZoCWgPQwhywRn8fcdhQJSGlFKUaBVN6ANoFkdAlWvIKx9oe3V9lChoBmgJaA9DCPp7KTzoUWNAlIaUUpRoFU3oA2gWR0CVb6nxaxHHdX2UKGgGaAloD0MIKzBkdav/ZUCUhpRSlGgVTegDaBZHQJV0qafBeol1fZQoaAZoCWgPQwhTBDi9i+xhQJSGlFKUaBVN6ANoFkdAlXYJbdJrcnV9lChoBmgJaA9DCKTeUzntuWdAlIaUUpRoFU3oA2gWR0CVex3VkMCtdX2UKGgGaAloD0MI9g1MbpT9ZECUhpRSlGgVTegDaBZHQJV75C2MKkV1fZQoaAZoCWgPQwjW5v9VRwhfQJSGlFKUaBVN6ANoFkdAlYGGjfvWpnV9lChoBmgJaA9DCPlM9s/TP1pAlIaUUpRoFU3oA2gWR0CVlkjJdSl4dX2UKGgGaAloD0MIwAgaM4noZECUhpRSlGgVTegDaBZHQJWXi6ErXlN1fZQoaAZoCWgPQwhoy7kUV0lfQJSGlFKUaBVN6ANoFkdAlZgGCI1tO3V9lChoBmgJaA9DCLCO44fK5WNAlIaUUpRoFU3oA2gWR0CVm1RigCfZdX2UKGgGaAloD0MIVG8NbJXqYECUhpRSlGgVTegDaBZHQJWeumDUVi51fZQoaAZoCWgPQwjWql0TUo9iQJSGlFKUaBVN6ANoFkdAlae+bqhUR3V9lChoBmgJaA9DCP8G7dVHcmFAlIaUUpRoFU3oA2gWR0CVqA1vVEuydX2UKGgGaAloD0MIjEtV2iIIcECUhpRSlGgVTZ0CaBZHQJWr/nfVI7N1fZQoaAZoCWgPQwjeBN80fUpfQJSGlFKUaBVN6ANoFkdAlaz4NutOmHV9lChoBmgJaA9DCFEujV94BWJAlIaUUpRoFU3oA2gWR0CVtSMFlkH2dX2UKGgGaAloD0MI22/tREkhZ0CUhpRSlGgVTegDaBZHQJW+a8Fpwjt1fZQoaAZoCWgPQwhr8/+qo29lQJSGlFKUaBVN6ANoFkdAlcbwAMlTnHV9lChoBmgJaA9DCK5FC9C2tm1AlIaUUpRoFU16AmgWR0CVx1s7dSEUdX2UKGgGaAloD0MILsVVZV+RY0CUhpRSlGgVTegDaBZHQJXIORFI/aB1fZQoaAZoCWgPQwg/xty1hPpdQJSGlFKUaBVN6ANoFkdAlc0BAGB4EHV9lChoBmgJaA9DCKIqptJP2WBAlIaUUpRoFU3oA2gWR0CVzb5e7cwhdX2UKGgGaAloD0MIzcth950vY0CUhpRSlGgVTegDaBZHQJXTqLiuMdd1fZQoaAZoCWgPQwis4LchxvlbQJSGlFKUaBVN6ANoFkdAldS8kyDZlHV9lChoBmgJaA9DCBYwgVt3P1tAlIaUUpRoFU3oA2gWR0CV6a8a4tpVdX2UKGgGaAloD0MITbuYZrpYU0CUhpRSlGgVTegDaBZHQJXqHOgQHzJ1fZQoaAZoCWgPQwhRaFn3D4pwQJSGlFKUaBVN2QJoFkdAler0M5OrQ3V9lChoBmgJaA9DCNCAejPq/mNAlIaUUpRoFU3oA2gWR0CV7RUExIrfdX2UKGgGaAloD0MIFyzVBbwySECUhpRSlGgVTTkBaBZHQJXtUWZZ0S11fZQoaAZoCWgPQwiInSl0XttBQJSGlFKUaBVNDwFoFkdAlfTFxOtW/HV9lChoBmgJaA9DCI9Rnnk5cW5AlIaUUpRoFU1cAmgWR0CV9a4vvjOtdX2UKGgGaAloD0MIAIv8+iEUYUCUhpRSlGgVTegDaBZHQJX4IQL/jsF1fZQoaAZoCWgPQwhvKeeLPRxmQJSGlFKUaBVN6ANoFkdAlfxhSUC7snV9lChoBmgJaA9DCIsaTMNwCWVAlIaUUpRoFU3oA2gWR0CV/U+V1Oj7dX2UKGgGaAloD0MI2jo42BvxbUCUhpRSlGgVTasBaBZHQJX+2EOAiFF1fZQoaAZoCWgPQwg8+fTYFsplQJSGlFKUaBVN6ANoFkdAlgUkD+zdDnV9lChoBmgJaA9DCD8AqU2c32xAlIaUUpRoFU3RAmgWR0CWCZn6l+EzdX2UKGgGaAloD0MI7IhDNpD6YUCUhpRSlGgVTegDaBZHQJYXWyUs4DN1fZQoaAZoCWgPQwjeOCnMewZHQJSGlFKUaBVNDAFoFkdAlhfl4X40uXV9lChoBmgJaA9DCLB0PjxLpmBAlIaUUpRoFU3oA2gWR0CWGFVT72tddX2UKGgGaAloD0MIN/qYD4iKZECUhpRSlGgVTegDaBZHQJYeJUo8ZDR1fZQoaAZoCWgPQwg4MLlRZE5jQJSGlFKUaBVN6ANoFkdAlibq0+kgwHV9lChoBmgJaA9DCBu9GqA0qmFAlIaUUpRoFU3oA2gWR0CWJ3Da4+bFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a152fff380e3a73d3a77f945fbe38a3ace2b089ed63180b99b564acc876b519
|
3 |
+
size 147218
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4561bea0d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4561bea160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4561bea1f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4561bea280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4561bea310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4561bea3a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4561bea430>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4561bea4c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4561bea550>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4561bea5e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4561bea670>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4561be8180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673133391344438950,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPZkr08lac/N6s1v3q/zL66tYc9khb5PQAAAAAAAAAATYVHPVCwtj57sB69CRQ7vjMObT2wP1W9AAAAAAAAAACA/7c9UtjGOLJjXbl8hs0zqhtAui/xhTgAAIA/AACAP5rtKzwUroa6jVp4u+WCdTjAlgq79qkIOgAAgD8AAIA/xtRiPjd6Ij/DHpS8lHbwvUTYkj1lRdw9AAAAAAAAAABmzhy7KbBputZOLrqvZlC1bNEcujbDSzkAAIA/AACAP80iu73DqRa6LqBPOcvwlDTZjKo7HR52uAAAgD8AAIA/TYQVPTx9qz8Tn0c+/FBBvrWZWT3a8nY9AAAAAAAAAADN+rY8KVA2ulOxlTt3xQs2QmzBOtaasboAAIA/AACAP00Saz2Pdle6fkGKuqvyRzRrDom7+tyfOQAAgD8AAIA/ZmY2t6RAPbld5bG2RAMPshq/YjuqQdk1AACAPwAAgD9z2YQ99jhAugJmY7maySkzMoSkuykvhDgAAIA/AACAPxqDRz7xQGw+LrkkvnIQX76sNhW92+tDvQAAAAAAAAAAs40NPfakaro+2as6ImULNC2pi7s/7Ma5AACAPwAAgD+a4EO9XBNouvPrVbrNoFK1J7J+OpMjezkAAIA/AACAP/PLzr1yF6E+7km+PcqtX741yP88c6/ZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGhajrvW4cUCUhpRSlIwBbJRNXgKMAXSUR0CUOu4wh4dIdX2UKGgGaAloD0MIdAtdicBeY0CUhpRSlGgVTegDaBZHQJQ7UBBAv+R1fZQoaAZoCWgPQwi1U3O5QRxlQJSGlFKUaBVN6ANoFkdAlD5T7Q9idHV9lChoBmgJaA9DCOF86lglrWJAlIaUUpRoFU3oA2gWR0CUQZvOhTOxdX2UKGgGaAloD0MIkWKARBOLZECUhpRSlGgVTegDaBZHQJRLgFPi1iR1fZQoaAZoCWgPQwjtuyL43xxdQJSGlFKUaBVN6ANoFkdAlFIyPMjeK3V9lChoBmgJaA9DCL72zJIAw2BAlIaUUpRoFU3oA2gWR0CUZoqR2bG4dX2UKGgGaAloD0MI8rbSazPYYECUhpRSlGgVTegDaBZHQJRoJEnb7CV1fZQoaAZoCWgPQwh+dOrK56JjQJSGlFKUaBVN6ANoFkdAlGx9BfKISHV9lChoBmgJaA9DCFfRH5r5w2NAlIaUUpRoFU3oA2gWR0CUcaAy2x6fdX2UKGgGaAloD0MIh4vc01UrYkCUhpRSlGgVTegDaBZHQJRzDcYZVGV1fZQoaAZoCWgPQwgFjC5vDkdhQJSGlFKUaBVN6ANoFkdAlHgoRVZLZnV9lChoBmgJaA9DCNOHLqhvFWZAlIaUUpRoFU3oA2gWR0CUeQB1s+FDdX2UKGgGaAloD0MIJ9pVSHmgYkCUhpRSlGgVTegDaBZHQJR52L/CIk91fZQoaAZoCWgPQwim1CXjmGthQJSGlFKUaBVN6ANoFkdAlJIwBLf1pXV9lChoBmgJaA9DCBuADYiQzWBAlIaUUpRoFU3oA2gWR0CUkzr56+nJdX2UKGgGaAloD0MIuVFkraEBWkCUhpRSlGgVTegDaBZHQJSUjYWcjJN1fZQoaAZoCWgPQwhH5/wUR2BjQJSGlFKUaBVN6ANoFkdAlJT82NvOyHV9lChoBmgJaA9DCONPVDasJV1AlIaUUpRoFU3oA2gWR0CUmF+kgwGodX2UKGgGaAloD0MI/YSzW8vdXUCUhpRSlGgVTegDaBZHQJSb20WuX/p1fZQoaAZoCWgPQwhhjEgUWiBfQJSGlFKUaBVN6ANoFkdAlKTxmK64D3V9lChoBmgJaA9DCMf17/pM+GVAlIaUUpRoFU3oA2gWR0CUqvN7SiM6dX2UKGgGaAloD0MIRKM7iB0hY0CUhpRSlGgVTegDaBZHQJTAj2pQ1rJ1fZQoaAZoCWgPQwhEMA4uHaxgQJSGlFKUaBVN6ANoFkdAlMJ8ynDR+nV9lChoBmgJaA9DCMDQI0bPDl1AlIaUUpRoFU3oA2gWR0CUxlE3sHB2dX2UKGgGaAloD0MINiGtMeg4ZUCUhpRSlGgVTegDaBZHQJTKpP2wmmd1fZQoaAZoCWgPQwjzHJHvUkBdQJSGlFKUaBVN6ANoFkdAlMvdLQHAynV9lChoBmgJaA9DCEPmyqBaRmNAlIaUUpRoFU3oA2gWR0CU0C4mCyyEdX2UKGgGaAloD0MIHEEqxY65ZUCUhpRSlGgVTegDaBZHQJTQ5aGHpKV1fZQoaAZoCWgPQwg01v7O9jBaQJSGlFKUaBVN6ANoFkdAlNGnBYV6/3V9lChoBmgJaA9DCBX/d0SF6GNAlIaUUpRoFU3oA2gWR0CU6Y1ejVQRdX2UKGgGaAloD0MImrM+5ZgVYUCUhpRSlGgVTegDaBZHQJTqd3FDOTt1fZQoaAZoCWgPQwijeQCLfKpkQJSGlFKUaBVN6ANoFkdAlOumLgn+h3V9lChoBmgJaA9DCJ2gTQ6fBFxAlIaUUpRoFU3oA2gWR0CU7A4FA3UAdX2UKGgGaAloD0MIFqHYChoCY0CUhpRSlGgVTegDaBZHQJTvPJ0W/Jx1fZQoaAZoCWgPQwhd/G1PEKRgQJSGlFKUaBVN6ANoFkdAlPLAgTyrgnV9lChoBmgJaA9DCDtREhJpBGFAlIaUUpRoFU3oA2gWR0CU/IZKnNxEdX2UKGgGaAloD0MI78UX7XGOZUCUhpRSlGgVTegDaBZHQJUC2eWfK6p1fZQoaAZoCWgPQwhTliGO9dpuQJSGlFKUaBVNdANoFkdAlQxMxKxs23V9lChoBmgJaA9DCBGQL6ECNGJAlIaUUpRoFU3oA2gWR0CVFm/zreImdX2UKGgGaAloD0MIz582qtMOXECUhpRSlGgVTegDaBZHQJUaVJK8L8d1fZQoaAZoCWgPQwjuWkI+aNlhQJSGlFKUaBVN6ANoFkdAlR9JkTYdyXV9lChoBmgJaA9DCHLcKR2sGGJAlIaUUpRoFU3oA2gWR0CVIKZ39rGjdX2UKGgGaAloD0MIqvQTzm5pYECUhpRSlGgVTegDaBZHQJUlugwoLG91fZQoaAZoCWgPQwgz3IDPDwpZQJSGlFKUaBVN6ANoFkdAlSaSV8kUsXV9lChoBmgJaA9DCCLeOv/25mFAlIaUUpRoFU3oA2gWR0CVJ3g0TDfndX2UKGgGaAloD0MIhlW8kXnEXECUhpRSlGgVTegDaBZHQJU/wOAiFCd1fZQoaAZoCWgPQwhUVtP1RGJeQJSGlFKUaBVN6ANoFkdAlUC/L5h0AHV9lChoBmgJaA9DCK5i8ZvCgmNAlIaUUpRoFU3oA2gWR0CVQgRCx/utdX2UKGgGaAloD0MIlx5N9WRjZUCUhpRSlGgVTegDaBZHQJVCebd8ArB1fZQoaAZoCWgPQwglPneC/adiQJSGlFKUaBVN6ANoFkdAlUWw/xDst3V9lChoBmgJaA9DCAWlaOXeRWJAlIaUUpRoFU3oA2gWR0CVSR9m6GxmdX2UKGgGaAloD0MI5gRtcvjYYkCUhpRSlGgVTegDaBZHQJVS7JPqLTB1fZQoaAZoCWgPQwi5NlSM8+5rQJSGlFKUaBVNnwFoFkdAlVND3AVO9HV9lChoBmgJaA9DCNDSFWwjMV1AlIaUUpRoFU3oA2gWR0CVWMwjdHlPdX2UKGgGaAloD0MIV3xD4bP1XECUhpRSlGgVTegDaBZHQJVhkyvcJt11fZQoaAZoCWgPQwhywRn8fcdhQJSGlFKUaBVN6ANoFkdAlWvIKx9oe3V9lChoBmgJaA9DCPp7KTzoUWNAlIaUUpRoFU3oA2gWR0CVb6nxaxHHdX2UKGgGaAloD0MIKzBkdav/ZUCUhpRSlGgVTegDaBZHQJV0qafBeol1fZQoaAZoCWgPQwhTBDi9i+xhQJSGlFKUaBVN6ANoFkdAlXYJbdJrcnV9lChoBmgJaA9DCKTeUzntuWdAlIaUUpRoFU3oA2gWR0CVex3VkMCtdX2UKGgGaAloD0MI9g1MbpT9ZECUhpRSlGgVTegDaBZHQJV75C2MKkV1fZQoaAZoCWgPQwjW5v9VRwhfQJSGlFKUaBVN6ANoFkdAlYGGjfvWpnV9lChoBmgJaA9DCPlM9s/TP1pAlIaUUpRoFU3oA2gWR0CVlkjJdSl4dX2UKGgGaAloD0MIwAgaM4noZECUhpRSlGgVTegDaBZHQJWXi6ErXlN1fZQoaAZoCWgPQwhoy7kUV0lfQJSGlFKUaBVN6ANoFkdAlZgGCI1tO3V9lChoBmgJaA9DCLCO44fK5WNAlIaUUpRoFU3oA2gWR0CVm1RigCfZdX2UKGgGaAloD0MIVG8NbJXqYECUhpRSlGgVTegDaBZHQJWeumDUVi51fZQoaAZoCWgPQwjWql0TUo9iQJSGlFKUaBVN6ANoFkdAlae+bqhUR3V9lChoBmgJaA9DCP8G7dVHcmFAlIaUUpRoFU3oA2gWR0CVqA1vVEuydX2UKGgGaAloD0MIjEtV2iIIcECUhpRSlGgVTZ0CaBZHQJWr/nfVI7N1fZQoaAZoCWgPQwjeBN80fUpfQJSGlFKUaBVN6ANoFkdAlaz4NutOmHV9lChoBmgJaA9DCFEujV94BWJAlIaUUpRoFU3oA2gWR0CVtSMFlkH2dX2UKGgGaAloD0MI22/tREkhZ0CUhpRSlGgVTegDaBZHQJW+a8Fpwjt1fZQoaAZoCWgPQwhr8/+qo29lQJSGlFKUaBVN6ANoFkdAlcbwAMlTnHV9lChoBmgJaA9DCK5FC9C2tm1AlIaUUpRoFU16AmgWR0CVx1s7dSEUdX2UKGgGaAloD0MILsVVZV+RY0CUhpRSlGgVTegDaBZHQJXIORFI/aB1fZQoaAZoCWgPQwg/xty1hPpdQJSGlFKUaBVN6ANoFkdAlc0BAGB4EHV9lChoBmgJaA9DCKIqptJP2WBAlIaUUpRoFU3oA2gWR0CVzb5e7cwhdX2UKGgGaAloD0MIzcth950vY0CUhpRSlGgVTegDaBZHQJXTqLiuMdd1fZQoaAZoCWgPQwis4LchxvlbQJSGlFKUaBVN6ANoFkdAldS8kyDZlHV9lChoBmgJaA9DCBYwgVt3P1tAlIaUUpRoFU3oA2gWR0CV6a8a4tpVdX2UKGgGaAloD0MITbuYZrpYU0CUhpRSlGgVTegDaBZHQJXqHOgQHzJ1fZQoaAZoCWgPQwhRaFn3D4pwQJSGlFKUaBVN2QJoFkdAler0M5OrQ3V9lChoBmgJaA9DCNCAejPq/mNAlIaUUpRoFU3oA2gWR0CV7RUExIrfdX2UKGgGaAloD0MIFyzVBbwySECUhpRSlGgVTTkBaBZHQJXtUWZZ0S11fZQoaAZoCWgPQwiInSl0XttBQJSGlFKUaBVNDwFoFkdAlfTFxOtW/HV9lChoBmgJaA9DCI9Rnnk5cW5AlIaUUpRoFU1cAmgWR0CV9a4vvjOtdX2UKGgGaAloD0MIAIv8+iEUYUCUhpRSlGgVTegDaBZHQJX4IQL/jsF1fZQoaAZoCWgPQwhvKeeLPRxmQJSGlFKUaBVN6ANoFkdAlfxhSUC7snV9lChoBmgJaA9DCIsaTMNwCWVAlIaUUpRoFU3oA2gWR0CV/U+V1Oj7dX2UKGgGaAloD0MI2jo42BvxbUCUhpRSlGgVTasBaBZHQJX+2EOAiFF1fZQoaAZoCWgPQwg8+fTYFsplQJSGlFKUaBVN6ANoFkdAlgUkD+zdDnV9lChoBmgJaA9DCD8AqU2c32xAlIaUUpRoFU3RAmgWR0CWCZn6l+EzdX2UKGgGaAloD0MI7IhDNpD6YUCUhpRSlGgVTegDaBZHQJYXWyUs4DN1fZQoaAZoCWgPQwjeOCnMewZHQJSGlFKUaBVNDAFoFkdAlhfl4X40uXV9lChoBmgJaA9DCLB0PjxLpmBAlIaUUpRoFU3oA2gWR0CWGFVT72tddX2UKGgGaAloD0MIN/qYD4iKZECUhpRSlGgVTegDaBZHQJYeJUo8ZDR1fZQoaAZoCWgPQwg4MLlRZE5jQJSGlFKUaBVN6ANoFkdAlibq0+kgwHV9lChoBmgJaA9DCBu9GqA0qmFAlIaUUpRoFU3oA2gWR0CWJ3Da4+bFdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dede0f8e37edfc097042af518d10ef63f1d17a542397b6c8b201477fc80ef444
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de05fba044c7d72c8522c9fcfd11d903c55d0a93f59eb2281a976984f979df9
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.47163418534342, "std_reward": 19.000695031167638, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T23:49:01.038359"}
|