Skanderbeg
commited on
Commit
·
409a95d
1
Parent(s):
a27dc4f
Uploaded Lunar lander PPO agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.68 +/- 14.68
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d9705a940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d9705a9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d9705aa60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d9705aaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f7d9705ab80>", "forward": "<function ActorCriticPolicy.forward at 0x7f7d9705ac10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7d9705aca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d9705ad30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7d9705adc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d9705ae50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d9705aee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d9705af70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7d97056930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673505158518627527, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOnlz3DFTi68YqMu7dsljikwPC6pqKGOQAAgD8AAIA/oEs8PtW9aT/Ex7A+i9Hjvje4Kj7XiII9AAAAAAAAAAAalu09fOIFPYzBML1mEHq+08AtPRKMjL0AAAAAAAAAAO2UCT6PVzS87QshPDpEoTxg0fe8upZpvQAAgD8AAIA/MxcVvUhHi7oa8qQ73HuVNhUORjubOb+6AACAPwAAgD9mCBG94TSeujpbfTvvZxM2jTUTOnLbkboAAIA/AACAP83+yrzDSUO6YCuHuGntUrV6tmG7ePifNwAAgD8AAIA/zX/MvPakRrr8QUy7mwWgttvBjzuuSW46AACAPwAAgD/TxwC+cTIUuw3ulLtO7d+42bmaPJ62vjoAAIA/AACAP012zD1FI/A+c2fhvWLtp74nfGY9bsyIPQAAAAAAAAAAQEoxPi3ddj5yXoc9siyDvjKLdT17pL88AAAAAAAAAAAaPQw+n1m0u/rDSzrTlhC4dQAqve6phrkAAIA/AACAP1qKgD1cZym6AqPau1tRfTaOQW07avXrtQAAgD8AAIA/zejbO9qlgz+tYM+8JCu2vne6JryZpUA9AAAAAAAAAACaCSi8w9FUug5aCLsrp+C1Na+qut6GIDoAAIA/AACAPwCsIbwWWzk/UfqlPdSKor4xHTM9+TIUvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDeGYZU/0UkCUhpRSlIwBbJRL5YwBdJRHQI/Hr/bTMJR1fZQoaAZoCWgPQwhQN1DgnVpKQJSGlFKUaBVL8WgWR0CPyH0mMOwxdX2UKGgGaAloD0MI3dCUnX5MT0CUhpRSlGgVS9ZoFkdAj8zhKlHjInV9lChoBmgJaA9DCAVtcvik3U5AlIaUUpRoFUv1aBZHQJABL39JjDt1fZQoaAZoCWgPQwhgI0kQriplQJSGlFKUaBVN6ANoFkdAkAHxQrMC93V9lChoBmgJaA9DCHYzox8NYWBAlIaUUpRoFU3oA2gWR0CQBcyIpH7QdX2UKGgGaAloD0MIrprniPxsYkCUhpRSlGgVTegDaBZHQJALzhR64Uh1fZQoaAZoCWgPQwgAqyNHOothQJSGlFKUaBVN6ANoFkdAkA3pIxxku3V9lChoBmgJaA9DCD5anDFMXGJAlIaUUpRoFU3oA2gWR0CQD2SJ0nw5dX2UKGgGaAloD0MINKFJYsnVYkCUhpRSlGgVTegDaBZHQJAVKMPz4Dd1fZQoaAZoCWgPQwjNHmgFBntkQJSGlFKUaBVN6ANoFkdAkBxQ4ffXPXV9lChoBmgJaA9DCEIKnkKumWBAlIaUUpRoFU3oA2gWR0CQIP+nZTQ3dX2UKGgGaAloD0MI14hgHNydZUCUhpRSlGgVTegDaBZHQJAhEXFcY651fZQoaAZoCWgPQwjnilJCMPpjQJSGlFKUaBVN6ANoFkdAkCJeW0JF9nV9lChoBmgJaA9DCJMCC2DKeWBAlIaUUpRoFU3oA2gWR0CQJ9SiudPMdX2UKGgGaAloD0MIQ6ooXmUWYkCUhpRSlGgVTegDaBZHQJApzO+qR2d1fZQoaAZoCWgPQwgrFyr/WtlZQJSGlFKUaBVN6ANoFkdAkCpzuSfUWnV9lChoBmgJaA9DCK+zIf/Md2NAlIaUUpRoFU3oA2gWR0CQKx7DVH4HdX2UKGgGaAloD0MIchQgCmaTXkCUhpRSlGgVTegDaBZHQJAtbVqesgd1fZQoaAZoCWgPQwizYOKPoglbQJSGlFKUaBVN6ANoFkdAkEmCuuA7P3V9lChoBmgJaA9DCEFK7NpeH2NAlIaUUpRoFU3oA2gWR0CQSlKoQ4CIdX2UKGgGaAloD0MIf95UpEJrYUCUhpRSlGgVTegDaBZHQJBOjfrKNhp1fZQoaAZoCWgPQwizs+idCsVeQJSGlFKUaBVN6ANoFkdAkFTNRNyo43V9lChoBmgJaA9DCJ4JTRLLIGNAlIaUUpRoFU3oA2gWR0CQVxhY/3WXdX2UKGgGaAloD0MImMCtu3k4ZUCUhpRSlGgVTegDaBZHQJBYlYuCf6J1fZQoaAZoCWgPQwjtDFNb6v9lQJSGlFKUaBVN6ANoFkdAkF66FVT723V9lChoBmgJaA9DCJoLXB5rmERAlIaUUpRoFUvyaBZHQJBiyXw9aEB1fZQoaAZoCWgPQwireY7I9/xjQJSGlFKUaBVN6ANoFkdAkGYgvtdAxHV9lChoBmgJaA9DCCDxK9bwzWFAlIaUUpRoFU3oA2gWR0CQat5Fw1iwdX2UKGgGaAloD0MIg1FJnQDIZECUhpRSlGgVTegDaBZHQJBq77Jnxrl1fZQoaAZoCWgPQwjIlXoWhJJkQJSGlFKUaBVN6ANoFkdAkGxQrUb1iHV9lChoBmgJaA9DCGKelbRiJ2BAlIaUUpRoFU3oA2gWR0CQcgnPmgandX2UKGgGaAloD0MI1IGsp1ZaZECUhpRSlGgVTegDaBZHQJB0RHMEA5t1fZQoaAZoCWgPQwjx89+D12hmQJSGlFKUaBVN6ANoFkdAkHTxLCemN3V9lChoBmgJaA9DCCkmb4CZ2WVAlIaUUpRoFU3oA2gWR0CQdaW4Vh1DdX2UKGgGaAloD0MIVklkH2TQX0CUhpRSlGgVTegDaBZHQJB4pcB2fTV1fZQoaAZoCWgPQwhDVOHP8Ao8QJSGlFKUaBVL6mgWR0CQgXdxyXD4dX2UKGgGaAloD0MI2SPUDCm0Y0CUhpRSlGgVTegDaBZHQJCDM/Tspod1fZQoaAZoCWgPQwgprir7rpxkQJSGlFKUaBVN6ANoFkdAkJafag261HV9lChoBmgJaA9DCFaDMLf7EWFAlIaUUpRoFU3oA2gWR0CQmxu+RHPNdX2UKGgGaAloD0MIIR0ewnipYUCUhpRSlGgVTegDaBZHQJCkFie/Yap1fZQoaAZoCWgPQwgDfSJPkuBFQJSGlFKUaBVL/GgWR0CQpVOs1baAdX2UKGgGaAloD0MI3nGKjuQDXUCUhpRSlGgVTegDaBZHQJClvUutfXx1fZQoaAZoCWgPQwhHcY46us5iQJSGlFKUaBVN6ANoFkdAkKvbS7Xg+HV9lChoBmgJaA9DCDl9PV+zYV9AlIaUUpRoFU3oA2gWR0CQr8YkE9t/dX2UKGgGaAloD0MI2Ls/3qteZkCUhpRSlGgVTegDaBZHQJCyzbuc+aB1fZQoaAZoCWgPQwgwnGuYoedIQJSGlFKUaBVLxWgWR0CQtrgrH2h7dX2UKGgGaAloD0MIIjMXuLwRZECUhpRSlGgVTegDaBZHQJC3MI0IkZ91fZQoaAZoCWgPQwhIiPIFrZplQJSGlFKUaBVN6ANoFkdAkLdBUFSsKnV9lChoBmgJaA9DCIPCoEwjwWVAlIaUUpRoFU3oA2gWR0CQuIGPxQSBdX2UKGgGaAloD0MI0V0SZ0UIZkCUhpRSlGgVTegDaBZHQJC9uuxKQJZ1fZQoaAZoCWgPQwj5D+m3LxxkQJSGlFKUaBVN6ANoFkdAkMGAu/UONHV9lChoBmgJaA9DCOQTsvO2DWdAlIaUUpRoFU3oA2gWR0CQwpLSuyNXdX2UKGgGaAloD0MIyjFZ3P/zYkCUhpRSlGgVTegDaBZHQJDHUDNhVlx1fZQoaAZoCWgPQwhwJxHhX+lhQJSGlFKUaBVN6ANoFkdAkNUm7J4jbHV9lChoBmgJaA9DCOASgH9Ky0tAlIaUUpRoFUveaBZHQJDVQFB6a9d1fZQoaAZoCWgPQwihnj4C/4pjQJSGlFKUaBVN6ANoFkdAkNjoTbnHN3V9lChoBmgJaA9DCMTpJFtd5WRAlIaUUpRoFU3oA2gWR0CQ8eR/mT1TdX2UKGgGaAloD0MIfSB551DMSUCUhpRSlGgVS9poFkdAkPgFiSaEz3V9lChoBmgJaA9DCCFZwATuImVAlIaUUpRoFU3oA2gWR0CQ+oeDWbw0dX2UKGgGaAloD0MIyT7IsmD0XkCUhpRSlGgVTegDaBZHQJD7szMzMzN1fZQoaAZoCWgPQwhzMJsAw8JjQJSGlFKUaBVN6ANoFkdAkPwUpd8iOnV9lChoBmgJaA9DCEmdgCbCG2NAlIaUUpRoFU3oA2gWR0CRBYKgqVhTdX2UKGgGaAloD0MI7GexFMnTPkCUhpRSlGgVS/loFkdAkQgZwfhddHV9lChoBmgJaA9DCPjj9ssn4F9AlIaUUpRoFU3oA2gWR0CRCLdCVryldX2UKGgGaAloD0MIuamB5nOyOkCUhpRSlGgVS/poFkdAkQmaxs2vS3V9lChoBmgJaA9DCN7H0RxZpV1AlIaUUpRoFU3oA2gWR0CRDFb961LKdX2UKGgGaAloD0MI5DCYv8J5Y0CUhpRSlGgVTegDaBZHQJEMvj/+85F1fZQoaAZoCWgPQwgKL8GpjzxnQJSGlFKUaBVN6ANoFkdAkQzLMs6JZXV9lChoBmgJaA9DCOId4EkLpGFAlIaUUpRoFU3oA2gWR0CRDeD1oQFtdX2UKGgGaAloD0MIJ09ZTdd5QECUhpRSlGgVS95oFkdAkRCMdT5wfnV9lChoBmgJaA9DCMpv0clSrGhAlIaUUpRoFU3oA2gWR0CRElkWykbhdX2UKGgGaAloD0MIqg1ORD+IYkCUhpRSlGgVTegDaBZHQJEVgSrYGt91fZQoaAZoCWgPQwiho1Ut6dJOQJSGlFKUaBVL1WgWR0CRFlaZx7zDdX2UKGgGaAloD0MI/iyWInmlYUCUhpRSlGgVTegDaBZHQJEX8AaNuLt1fZQoaAZoCWgPQwj04VmCjFQ8QJSGlFKUaBVLz2gWR0CRGjyad+XrdX2UKGgGaAloD0MIu5wSEJMCUECUhpRSlGgVS+VoFkdAkR2g1rIo3XV9lChoBmgJaA9DCECjdOnfumNAlIaUUpRoFU3oA2gWR0CRIDIGQjlgdX2UKGgGaAloD0MIs3vysFDqY0CUhpRSlGgVTegDaBZHQJEiZ2ki2Ul1fZQoaAZoCWgPQwju0RvuI9NkQJSGlFKUaBVN6ANoFkdAkTjmHxjJ+3V9lChoBmgJaA9DCKTBbW3hcWFAlIaUUpRoFU3oA2gWR0CRPrCaJAMVdX2UKGgGaAloD0MI0uEhjB/9ZECUhpRSlGgVTegDaBZHQJFCXpQk5ZN1fZQoaAZoCWgPQwj9TpMZ76NkQJSGlFKUaBVN6ANoFkdAkVFo7eVLSXV9lChoBmgJaA9DCIicvp6v7mFAlIaUUpRoFU3oA2gWR0CRUiXWOIZZdX2UKGgGaAloD0MIhxkaT4T9ZECUhpRSlGgVTegDaBZHQJFTOHtWuHN1fZQoaAZoCWgPQwgZ5C7CFANiQJSGlFKUaBVN6ANoFkdAkVZ4l6Z6U3V9lChoBmgJaA9DCFfrxOV4r2RAlIaUUpRoFU3oA2gWR0CRVvoTwlSkdX2UKGgGaAloD0MIPdLgtrZDXUCUhpRSlGgVTegDaBZHQJFYSmO2iL51fZQoaAZoCWgPQwhTJcreUnBFQJSGlFKUaBVL0WgWR0CRXqoddVvNdX2UKGgGaAloD0MIwxA5fT2nPECUhpRSlGgVS+JoFkdAkV6trO7g9HV9lChoBmgJaA9DCPruVpZoUGFAlIaUUpRoFU3oA2gWR0CRYVv/zasZdX2UKGgGaAloD0MI4C77dSf4YkCUhpRSlGgVTegDaBZHQJFiTUBnzxx1fZQoaAZoCWgPQwifk943vkJAQJSGlFKUaBVL0mgWR0CRY2eyRjjJdX2UKGgGaAloD0MIxVkRNVGYYECUhpRSlGgVTegDaBZHQJFkBCVrylN1fZQoaAZoCWgPQwjEmPT30n1hQJSGlFKUaBVN6ANoFkdAkWZL1h9b5nV9lChoBmgJaA9DCCtPIOwU12JAlIaUUpRoFU3oA2gWR0CRaYSElE7XdX2UKGgGaAloD0MI1Xd+UYLOM0CUhpRSlGgVS8poFkdAkWuKi9IwunV9lChoBmgJaA9DCJ+tg4O9VWJAlIaUUpRoFU3oA2gWR0CRa9lar3j/dX2UKGgGaAloD0MICRozifpnZECUhpRSlGgVTegDaBZHQJFt61NQCS11fZQoaAZoCWgPQwg8a7ddaE5OQJSGlFKUaBVL22gWR0CRbvWweNkwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef28bd8c9b8286762193bb8c8b7ec48fe304c3538979a391258362b9b858121
|
3 |
+
size 147396
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d9705a940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d9705a9d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d9705aa60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d9705aaf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7d9705ab80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7d9705ac10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7d9705aca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d9705ad30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7d9705adc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d9705ae50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d9705aee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d9705af70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f7d97056930>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673505158518627527,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOnlz3DFTi68YqMu7dsljikwPC6pqKGOQAAgD8AAIA/oEs8PtW9aT/Ex7A+i9Hjvje4Kj7XiII9AAAAAAAAAAAalu09fOIFPYzBML1mEHq+08AtPRKMjL0AAAAAAAAAAO2UCT6PVzS87QshPDpEoTxg0fe8upZpvQAAgD8AAIA/MxcVvUhHi7oa8qQ73HuVNhUORjubOb+6AACAPwAAgD9mCBG94TSeujpbfTvvZxM2jTUTOnLbkboAAIA/AACAP83+yrzDSUO6YCuHuGntUrV6tmG7ePifNwAAgD8AAIA/zX/MvPakRrr8QUy7mwWgttvBjzuuSW46AACAPwAAgD/TxwC+cTIUuw3ulLtO7d+42bmaPJ62vjoAAIA/AACAP012zD1FI/A+c2fhvWLtp74nfGY9bsyIPQAAAAAAAAAAQEoxPi3ddj5yXoc9siyDvjKLdT17pL88AAAAAAAAAAAaPQw+n1m0u/rDSzrTlhC4dQAqve6phrkAAIA/AACAP1qKgD1cZym6AqPau1tRfTaOQW07avXrtQAAgD8AAIA/zejbO9qlgz+tYM+8JCu2vne6JryZpUA9AAAAAAAAAACaCSi8w9FUug5aCLsrp+C1Na+qut6GIDoAAIA/AACAPwCsIbwWWzk/UfqlPdSKor4xHTM9+TIUvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDeGYZU/0UkCUhpRSlIwBbJRL5YwBdJRHQI/Hr/bTMJR1fZQoaAZoCWgPQwhQN1DgnVpKQJSGlFKUaBVL8WgWR0CPyH0mMOwxdX2UKGgGaAloD0MI3dCUnX5MT0CUhpRSlGgVS9ZoFkdAj8zhKlHjInV9lChoBmgJaA9DCAVtcvik3U5AlIaUUpRoFUv1aBZHQJABL39JjDt1fZQoaAZoCWgPQwhgI0kQriplQJSGlFKUaBVN6ANoFkdAkAHxQrMC93V9lChoBmgJaA9DCHYzox8NYWBAlIaUUpRoFU3oA2gWR0CQBcyIpH7QdX2UKGgGaAloD0MIrprniPxsYkCUhpRSlGgVTegDaBZHQJALzhR64Uh1fZQoaAZoCWgPQwgAqyNHOothQJSGlFKUaBVN6ANoFkdAkA3pIxxku3V9lChoBmgJaA9DCD5anDFMXGJAlIaUUpRoFU3oA2gWR0CQD2SJ0nw5dX2UKGgGaAloD0MINKFJYsnVYkCUhpRSlGgVTegDaBZHQJAVKMPz4Dd1fZQoaAZoCWgPQwjNHmgFBntkQJSGlFKUaBVN6ANoFkdAkBxQ4ffXPXV9lChoBmgJaA9DCEIKnkKumWBAlIaUUpRoFU3oA2gWR0CQIP+nZTQ3dX2UKGgGaAloD0MI14hgHNydZUCUhpRSlGgVTegDaBZHQJAhEXFcY651fZQoaAZoCWgPQwjnilJCMPpjQJSGlFKUaBVN6ANoFkdAkCJeW0JF9nV9lChoBmgJaA9DCJMCC2DKeWBAlIaUUpRoFU3oA2gWR0CQJ9SiudPMdX2UKGgGaAloD0MIQ6ooXmUWYkCUhpRSlGgVTegDaBZHQJApzO+qR2d1fZQoaAZoCWgPQwgrFyr/WtlZQJSGlFKUaBVN6ANoFkdAkCpzuSfUWnV9lChoBmgJaA9DCK+zIf/Md2NAlIaUUpRoFU3oA2gWR0CQKx7DVH4HdX2UKGgGaAloD0MIchQgCmaTXkCUhpRSlGgVTegDaBZHQJAtbVqesgd1fZQoaAZoCWgPQwizYOKPoglbQJSGlFKUaBVN6ANoFkdAkEmCuuA7P3V9lChoBmgJaA9DCEFK7NpeH2NAlIaUUpRoFU3oA2gWR0CQSlKoQ4CIdX2UKGgGaAloD0MIf95UpEJrYUCUhpRSlGgVTegDaBZHQJBOjfrKNhp1fZQoaAZoCWgPQwizs+idCsVeQJSGlFKUaBVN6ANoFkdAkFTNRNyo43V9lChoBmgJaA9DCJ4JTRLLIGNAlIaUUpRoFU3oA2gWR0CQVxhY/3WXdX2UKGgGaAloD0MImMCtu3k4ZUCUhpRSlGgVTegDaBZHQJBYlYuCf6J1fZQoaAZoCWgPQwjtDFNb6v9lQJSGlFKUaBVN6ANoFkdAkF66FVT723V9lChoBmgJaA9DCJoLXB5rmERAlIaUUpRoFUvyaBZHQJBiyXw9aEB1fZQoaAZoCWgPQwireY7I9/xjQJSGlFKUaBVN6ANoFkdAkGYgvtdAxHV9lChoBmgJaA9DCCDxK9bwzWFAlIaUUpRoFU3oA2gWR0CQat5Fw1iwdX2UKGgGaAloD0MIg1FJnQDIZECUhpRSlGgVTegDaBZHQJBq77Jnxrl1fZQoaAZoCWgPQwjIlXoWhJJkQJSGlFKUaBVN6ANoFkdAkGxQrUb1iHV9lChoBmgJaA9DCGKelbRiJ2BAlIaUUpRoFU3oA2gWR0CQcgnPmgandX2UKGgGaAloD0MI1IGsp1ZaZECUhpRSlGgVTegDaBZHQJB0RHMEA5t1fZQoaAZoCWgPQwjx89+D12hmQJSGlFKUaBVN6ANoFkdAkHTxLCemN3V9lChoBmgJaA9DCCkmb4CZ2WVAlIaUUpRoFU3oA2gWR0CQdaW4Vh1DdX2UKGgGaAloD0MIVklkH2TQX0CUhpRSlGgVTegDaBZHQJB4pcB2fTV1fZQoaAZoCWgPQwhDVOHP8Ao8QJSGlFKUaBVL6mgWR0CQgXdxyXD4dX2UKGgGaAloD0MI2SPUDCm0Y0CUhpRSlGgVTegDaBZHQJCDM/Tspod1fZQoaAZoCWgPQwgprir7rpxkQJSGlFKUaBVN6ANoFkdAkJafag261HV9lChoBmgJaA9DCFaDMLf7EWFAlIaUUpRoFU3oA2gWR0CQmxu+RHPNdX2UKGgGaAloD0MIIR0ewnipYUCUhpRSlGgVTegDaBZHQJCkFie/Yap1fZQoaAZoCWgPQwgDfSJPkuBFQJSGlFKUaBVL/GgWR0CQpVOs1baAdX2UKGgGaAloD0MI3nGKjuQDXUCUhpRSlGgVTegDaBZHQJClvUutfXx1fZQoaAZoCWgPQwhHcY46us5iQJSGlFKUaBVN6ANoFkdAkKvbS7Xg+HV9lChoBmgJaA9DCDl9PV+zYV9AlIaUUpRoFU3oA2gWR0CQr8YkE9t/dX2UKGgGaAloD0MI2Ls/3qteZkCUhpRSlGgVTegDaBZHQJCyzbuc+aB1fZQoaAZoCWgPQwgwnGuYoedIQJSGlFKUaBVLxWgWR0CQtrgrH2h7dX2UKGgGaAloD0MIIjMXuLwRZECUhpRSlGgVTegDaBZHQJC3MI0IkZ91fZQoaAZoCWgPQwhIiPIFrZplQJSGlFKUaBVN6ANoFkdAkLdBUFSsKnV9lChoBmgJaA9DCIPCoEwjwWVAlIaUUpRoFU3oA2gWR0CQuIGPxQSBdX2UKGgGaAloD0MI0V0SZ0UIZkCUhpRSlGgVTegDaBZHQJC9uuxKQJZ1fZQoaAZoCWgPQwj5D+m3LxxkQJSGlFKUaBVN6ANoFkdAkMGAu/UONHV9lChoBmgJaA9DCOQTsvO2DWdAlIaUUpRoFU3oA2gWR0CQwpLSuyNXdX2UKGgGaAloD0MIyjFZ3P/zYkCUhpRSlGgVTegDaBZHQJDHUDNhVlx1fZQoaAZoCWgPQwhwJxHhX+lhQJSGlFKUaBVN6ANoFkdAkNUm7J4jbHV9lChoBmgJaA9DCOASgH9Ky0tAlIaUUpRoFUveaBZHQJDVQFB6a9d1fZQoaAZoCWgPQwihnj4C/4pjQJSGlFKUaBVN6ANoFkdAkNjoTbnHN3V9lChoBmgJaA9DCMTpJFtd5WRAlIaUUpRoFU3oA2gWR0CQ8eR/mT1TdX2UKGgGaAloD0MIfSB551DMSUCUhpRSlGgVS9poFkdAkPgFiSaEz3V9lChoBmgJaA9DCCFZwATuImVAlIaUUpRoFU3oA2gWR0CQ+oeDWbw0dX2UKGgGaAloD0MIyT7IsmD0XkCUhpRSlGgVTegDaBZHQJD7szMzMzN1fZQoaAZoCWgPQwhzMJsAw8JjQJSGlFKUaBVN6ANoFkdAkPwUpd8iOnV9lChoBmgJaA9DCEmdgCbCG2NAlIaUUpRoFU3oA2gWR0CRBYKgqVhTdX2UKGgGaAloD0MI7GexFMnTPkCUhpRSlGgVS/loFkdAkQgZwfhddHV9lChoBmgJaA9DCPjj9ssn4F9AlIaUUpRoFU3oA2gWR0CRCLdCVryldX2UKGgGaAloD0MIuamB5nOyOkCUhpRSlGgVS/poFkdAkQmaxs2vS3V9lChoBmgJaA9DCN7H0RxZpV1AlIaUUpRoFU3oA2gWR0CRDFb961LKdX2UKGgGaAloD0MI5DCYv8J5Y0CUhpRSlGgVTegDaBZHQJEMvj/+85F1fZQoaAZoCWgPQwgKL8GpjzxnQJSGlFKUaBVN6ANoFkdAkQzLMs6JZXV9lChoBmgJaA9DCOId4EkLpGFAlIaUUpRoFU3oA2gWR0CRDeD1oQFtdX2UKGgGaAloD0MIJ09ZTdd5QECUhpRSlGgVS95oFkdAkRCMdT5wfnV9lChoBmgJaA9DCMpv0clSrGhAlIaUUpRoFU3oA2gWR0CRElkWykbhdX2UKGgGaAloD0MIqg1ORD+IYkCUhpRSlGgVTegDaBZHQJEVgSrYGt91fZQoaAZoCWgPQwiho1Ut6dJOQJSGlFKUaBVL1WgWR0CRFlaZx7zDdX2UKGgGaAloD0MI/iyWInmlYUCUhpRSlGgVTegDaBZHQJEX8AaNuLt1fZQoaAZoCWgPQwj04VmCjFQ8QJSGlFKUaBVLz2gWR0CRGjyad+XrdX2UKGgGaAloD0MIu5wSEJMCUECUhpRSlGgVS+VoFkdAkR2g1rIo3XV9lChoBmgJaA9DCECjdOnfumNAlIaUUpRoFU3oA2gWR0CRIDIGQjlgdX2UKGgGaAloD0MIs3vysFDqY0CUhpRSlGgVTegDaBZHQJEiZ2ki2Ul1fZQoaAZoCWgPQwju0RvuI9NkQJSGlFKUaBVN6ANoFkdAkTjmHxjJ+3V9lChoBmgJaA9DCKTBbW3hcWFAlIaUUpRoFU3oA2gWR0CRPrCaJAMVdX2UKGgGaAloD0MI0uEhjB/9ZECUhpRSlGgVTegDaBZHQJFCXpQk5ZN1fZQoaAZoCWgPQwj9TpMZ76NkQJSGlFKUaBVN6ANoFkdAkVFo7eVLSXV9lChoBmgJaA9DCIicvp6v7mFAlIaUUpRoFU3oA2gWR0CRUiXWOIZZdX2UKGgGaAloD0MIhxkaT4T9ZECUhpRSlGgVTegDaBZHQJFTOHtWuHN1fZQoaAZoCWgPQwgZ5C7CFANiQJSGlFKUaBVN6ANoFkdAkVZ4l6Z6U3V9lChoBmgJaA9DCFfrxOV4r2RAlIaUUpRoFU3oA2gWR0CRVvoTwlSkdX2UKGgGaAloD0MIPdLgtrZDXUCUhpRSlGgVTegDaBZHQJFYSmO2iL51fZQoaAZoCWgPQwhTJcreUnBFQJSGlFKUaBVL0WgWR0CRXqoddVvNdX2UKGgGaAloD0MIwxA5fT2nPECUhpRSlGgVS+JoFkdAkV6trO7g9HV9lChoBmgJaA9DCPruVpZoUGFAlIaUUpRoFU3oA2gWR0CRYVv/zasZdX2UKGgGaAloD0MI4C77dSf4YkCUhpRSlGgVTegDaBZHQJFiTUBnzxx1fZQoaAZoCWgPQwifk943vkJAQJSGlFKUaBVL0mgWR0CRY2eyRjjJdX2UKGgGaAloD0MIxVkRNVGYYECUhpRSlGgVTegDaBZHQJFkBCVrylN1fZQoaAZoCWgPQwjEmPT30n1hQJSGlFKUaBVN6ANoFkdAkWZL1h9b5nV9lChoBmgJaA9DCCtPIOwU12JAlIaUUpRoFU3oA2gWR0CRaYSElE7XdX2UKGgGaAloD0MI1Xd+UYLOM0CUhpRSlGgVS8poFkdAkWuKi9IwunV9lChoBmgJaA9DCJ+tg4O9VWJAlIaUUpRoFU3oA2gWR0CRa9lar3j/dX2UKGgGaAloD0MICRozifpnZECUhpRSlGgVTegDaBZHQJFt61NQCS11fZQoaAZoCWgPQwg8a7ddaE5OQJSGlFKUaBVL22gWR0CRbvWweNkwdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b6cceb573eb0829f5bbeabea52e1a8f718a95f518d4ee311f876da0cc94bcce
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a67b9b5509a815c71cdfdaa206a28d9f4e2462294f7dfc36735102682ac4385
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (250 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.68478224382835, "std_reward": 14.684621520780537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T06:59:52.870504"}
|