metadata
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
- generated_from_trainer
metrics:
- f1
- recall
- accuracy
- precision
model-index:
- name: roberta-base-fine-tuned-text-classificarion-ds-ss3
results: []
roberta-base-fine-tuned-text-classificarion-ds-ss3
This model is a fine-tuned version of PlanTL-GOB-ES/roberta-base-bne on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0250
- F1: 0.7788
- Recall: 0.7819
- Accuracy: 0.7819
- Precision: 0.7902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision |
---|---|---|---|---|---|---|---|
No log | 1.0 | 442 | 1.4320 | 0.6547 | 0.6927 | 0.6927 | 0.6529 |
2.1286 | 2.0 | 884 | 1.1279 | 0.7089 | 0.7386 | 0.7386 | 0.7006 |
1.0149 | 3.0 | 1326 | 1.0204 | 0.7350 | 0.7513 | 0.7513 | 0.7355 |
0.6117 | 4.0 | 1768 | 0.9823 | 0.7552 | 0.7698 | 0.7698 | 0.7724 |
0.3659 | 5.0 | 2210 | 1.0250 | 0.7788 | 0.7819 | 0.7819 | 0.7902 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3