Update modeling_doge.py
Browse files- modeling_doge.py +339 -698
modeling_doge.py
CHANGED
|
@@ -5,10 +5,9 @@
|
|
| 5 |
# modular_doge.py file directly. One of our CI enforces this.
|
| 6 |
# 馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
|
| 7 |
# coding=utf-8
|
| 8 |
-
# Copyright
|
| 9 |
#
|
| 10 |
-
#
|
| 11 |
-
# The Doge family of small language models is trained by Jingze Shi.
|
| 12 |
#
|
| 13 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 14 |
# you may not use this file except in compliance with the License.
|
|
@@ -23,39 +22,33 @@
|
|
| 23 |
# limitations under the License.
|
| 24 |
|
| 25 |
import math
|
| 26 |
-
from typing import Callable,
|
| 27 |
-
from packaging import version
|
| 28 |
|
| 29 |
import torch
|
| 30 |
import torch.nn.functional as F
|
| 31 |
from torch import nn
|
| 32 |
|
| 33 |
from transformers.activations import ACT2FN
|
| 34 |
-
from transformers.cache_utils import Cache, DynamicCache
|
| 35 |
from transformers.generation import GenerationMixin
|
| 36 |
-
from transformers.
|
| 37 |
-
from transformers.
|
| 38 |
-
from transformers.
|
| 39 |
-
from transformers.
|
|
|
|
|
|
|
|
|
|
| 40 |
from transformers.processing_utils import Unpack
|
| 41 |
-
from transformers.utils import
|
| 42 |
-
|
| 43 |
-
add_start_docstrings,
|
| 44 |
-
add_start_docstrings_to_model_forward,
|
| 45 |
-
is_torch_flex_attn_available,
|
| 46 |
-
logging,
|
| 47 |
-
replace_return_docstrings,
|
| 48 |
-
)
|
| 49 |
from .configuration_doge import DogeConfig
|
| 50 |
|
| 51 |
-
if is_torch_flex_attn_available() and version.parse(torch.__version__) >= version.parse("2.6.0"):
|
| 52 |
-
from torch.nn.attention.flex_attention import flex_attention
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
_CONFIG_FOR_DOC = "DogeConfig"
|
| 57 |
|
| 58 |
|
|
|
|
| 59 |
class DogeRMSNorm(nn.Module):
|
| 60 |
def __init__(self, hidden_size, eps=1e-6):
|
| 61 |
"""
|
|
@@ -92,7 +85,7 @@ class DogeRotaryEmbedding(nn.Module):
|
|
| 92 |
def __init__(self, config: DogeConfig, device=None):
|
| 93 |
super().__init__()
|
| 94 |
# BC: "rope_type" was originally "type"
|
| 95 |
-
if hasattr(config, "rope_scaling") and config.rope_scaling
|
| 96 |
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 97 |
else:
|
| 98 |
self.rope_type = "default"
|
|
@@ -106,45 +99,18 @@ class DogeRotaryEmbedding(nn.Module):
|
|
| 106 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 107 |
self.original_inv_freq = self.inv_freq
|
| 108 |
|
| 109 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
| 110 |
-
"""
|
| 111 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 112 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
| 113 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 114 |
-
"""
|
| 115 |
-
seq_len = torch.max(position_ids) + 1
|
| 116 |
-
if seq_len > self.max_seq_len_cached: # growth
|
| 117 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
| 118 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 119 |
-
self.max_seq_len_cached = seq_len
|
| 120 |
-
|
| 121 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 122 |
-
# This .to() is needed if the model has been moved to a device after being initialized (because
|
| 123 |
-
# the buffer is automatically moved, but not the original copy)
|
| 124 |
-
self.original_inv_freq = self.original_inv_freq.to(device)
|
| 125 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 126 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
| 127 |
-
|
| 128 |
@torch.no_grad()
|
|
|
|
| 129 |
def forward(self, x, position_ids):
|
| 130 |
-
|
| 131 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 132 |
-
|
| 133 |
-
# Core RoPE block
|
| 134 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 135 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 136 |
-
|
| 137 |
-
device_type = x.device.type
|
| 138 |
-
device_type
|
| 139 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
| 140 |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 141 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 142 |
-
cos = emb.cos()
|
| 143 |
-
sin = emb.sin()
|
| 144 |
-
|
| 145 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 146 |
-
cos = cos * self.attention_scaling
|
| 147 |
-
sin = sin * self.attention_scaling
|
| 148 |
|
| 149 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 150 |
|
|
@@ -203,105 +169,60 @@ def eager_attention_forward(
|
|
| 203 |
attention_mask: Optional[torch.Tensor],
|
| 204 |
scaling: float,
|
| 205 |
dropout: float = 0.0,
|
| 206 |
-
**kwargs,
|
| 207 |
-
)
|
| 208 |
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 209 |
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 210 |
|
| 211 |
-
attn_weights = torch.matmul(query, key_states.transpose(
|
| 212 |
if attention_mask is not None:
|
| 213 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 214 |
attn_weights = attn_weights + causal_mask
|
| 215 |
|
| 216 |
-
attn_weights =
|
| 217 |
-
attn_weights =
|
| 218 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 219 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 220 |
|
| 221 |
return attn_output, attn_weights
|
| 222 |
|
| 223 |
|
| 224 |
-
def sdpa_attention_forward(
|
| 225 |
-
module: nn.Module,
|
| 226 |
-
query: torch.Tensor,
|
| 227 |
-
key: torch.Tensor,
|
| 228 |
-
value: torch.Tensor,
|
| 229 |
-
attention_mask: Optional[torch.Tensor],
|
| 230 |
-
dropout: float = 0.0,
|
| 231 |
-
scaling: Optional[float] = None,
|
| 232 |
-
is_causal: Optional[bool] = None,
|
| 233 |
-
**kwargs,
|
| 234 |
-
) -> Tuple[torch.Tensor, None]:
|
| 235 |
-
key = repeat_kv(key, module.num_key_value_groups)
|
| 236 |
-
value = repeat_kv(value, module.num_key_value_groups)
|
| 237 |
-
|
| 238 |
-
causal_mask = attention_mask
|
| 239 |
-
if attention_mask is not None:
|
| 240 |
-
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
| 241 |
-
|
| 242 |
-
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
|
| 243 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 244 |
-
query = query.contiguous()
|
| 245 |
-
key = key.contiguous()
|
| 246 |
-
value = value.contiguous()
|
| 247 |
-
|
| 248 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 249 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 250 |
-
if is_causal is None:
|
| 251 |
-
is_causal = causal_mask is None and query.shape[2] > 1
|
| 252 |
-
|
| 253 |
-
# Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
|
| 254 |
-
# We convert it to a bool for the SDPA kernel that only accepts bools.
|
| 255 |
-
if torch.jit.is_tracing() and isinstance(is_causal, torch.Tensor):
|
| 256 |
-
is_causal = is_causal.item()
|
| 257 |
-
|
| 258 |
-
# NOTE: As of pytorch 2.5.1, SDPA backward pass of cuDNN is still incorrect, so we disable cuDNN SDPA (see https://github.com/pytorch/pytorch/issues/138581)
|
| 259 |
-
torch.backends.cuda.enable_cudnn_sdp(False)
|
| 260 |
-
attn_output = F.scaled_dot_product_attention(
|
| 261 |
-
query=query,
|
| 262 |
-
key=key,
|
| 263 |
-
value=value,
|
| 264 |
-
attn_mask=causal_mask,
|
| 265 |
-
dropout_p=dropout,
|
| 266 |
-
scale=scaling,
|
| 267 |
-
is_causal=is_causal,
|
| 268 |
-
)
|
| 269 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 270 |
-
|
| 271 |
-
return attn_output, None
|
| 272 |
-
|
| 273 |
-
|
| 274 |
def flex_attention_forward(
|
| 275 |
module: nn.Module,
|
| 276 |
query: torch.Tensor,
|
| 277 |
key: torch.Tensor,
|
| 278 |
value: torch.Tensor,
|
| 279 |
-
attention_mask:
|
| 280 |
scaling: Optional[float] = None,
|
| 281 |
-
is_causal: Optional[bool] = None,
|
| 282 |
softcap: Optional[float] = None,
|
| 283 |
head_mask: Optional[torch.Tensor] = None,
|
| 284 |
**kwargs,
|
| 285 |
-
) ->
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
| 289 |
|
| 290 |
-
|
| 291 |
-
def mask_mod(score, batch, head, q_idx, kv_idx):
|
| 292 |
if softcap is not None:
|
| 293 |
score = softcap * torch.tanh(score / softcap)
|
| 294 |
if causal_mask is not None:
|
| 295 |
-
score = score + causal_mask[
|
| 296 |
if head_mask is not None:
|
| 297 |
-
score = score + head_mask[
|
| 298 |
return score
|
| 299 |
|
| 300 |
-
attn_output, attention_weights =
|
| 301 |
-
query
|
| 302 |
-
key
|
| 303 |
-
value
|
| 304 |
-
score_mod=
|
|
|
|
| 305 |
enable_gqa=True,
|
| 306 |
scale=scaling,
|
| 307 |
# Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
|
|
@@ -315,16 +236,11 @@ def flex_attention_forward(
|
|
| 315 |
return attn_output, attention_weights
|
| 316 |
|
| 317 |
|
| 318 |
-
ALL_ATTENTION_FUNCTIONS =
|
| 319 |
-
|
| 320 |
-
"sdpa": sdpa_attention_forward,
|
| 321 |
-
"flex_attention": flex_attention_forward,
|
| 322 |
-
}
|
| 323 |
-
|
| 324 |
|
| 325 |
-
class DogeDynamicMaskAttention(nn.Module):
|
| 326 |
-
"""Dynamic Mask Attention from 'Wonderful Matrices' paper."""
|
| 327 |
|
|
|
|
| 328 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 329 |
super().__init__()
|
| 330 |
self.config = config
|
|
@@ -334,35 +250,34 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 334 |
self.scaling = self.head_dim**-0.5
|
| 335 |
self.attention_dropout = config.attention_dropout
|
| 336 |
self.keep_window_size = config.keep_window_size
|
| 337 |
-
self.dynamic_mask_ratio = config.dynamic_mask_ratio
|
| 338 |
|
| 339 |
self.q_proj = nn.Linear(
|
| 340 |
-
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.
|
| 341 |
)
|
| 342 |
self.k_proj = nn.Linear(
|
| 343 |
-
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.
|
| 344 |
)
|
| 345 |
self.v_proj = nn.Linear(
|
| 346 |
-
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.
|
| 347 |
)
|
| 348 |
# dynamic mask for the QK^T attention weights matrix
|
| 349 |
self.A = nn.Parameter(torch.zeros(config.num_attention_heads))
|
| 350 |
self.dt_proj = nn.Linear(
|
| 351 |
-
config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.
|
| 352 |
)
|
| 353 |
self.o_proj = nn.Linear(
|
| 354 |
-
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.
|
| 355 |
)
|
| 356 |
|
| 357 |
def forward(
|
| 358 |
self,
|
| 359 |
hidden_states: torch.Tensor,
|
| 360 |
-
position_embeddings:
|
| 361 |
attention_mask: Optional[torch.Tensor] = None,
|
| 362 |
past_key_value: Optional[Cache] = None,
|
| 363 |
cache_position: Optional[torch.LongTensor] = None,
|
| 364 |
**kwargs,
|
| 365 |
-
) ->
|
| 366 |
input_shape = hidden_states.shape[:-1]
|
| 367 |
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 368 |
|
|
@@ -382,24 +297,17 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 382 |
dt_states = self.dt_proj(
|
| 383 |
value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1)
|
| 384 |
)
|
| 385 |
-
|
| 386 |
attn_mask = self.prepare_dynamic_mask(
|
| 387 |
hidden_states=hidden_states,
|
| 388 |
-
|
| 389 |
keep_window_size=self.keep_window_size,
|
| 390 |
-
dynamic_mask_ratio=self.dynamic_mask_ratio,
|
| 391 |
attention_mask=attention_mask,
|
| 392 |
)
|
| 393 |
|
| 394 |
attention_interface: Callable = eager_attention_forward
|
| 395 |
if self.config._attn_implementation != "eager":
|
| 396 |
-
|
| 397 |
-
logger.warning_once(
|
| 398 |
-
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 399 |
-
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 400 |
-
)
|
| 401 |
-
else:
|
| 402 |
-
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 403 |
|
| 404 |
attn_output, attn_weights = attention_interface(
|
| 405 |
self,
|
|
@@ -419,77 +327,80 @@ class DogeDynamicMaskAttention(nn.Module):
|
|
| 419 |
def prepare_dynamic_mask(
|
| 420 |
self,
|
| 421 |
hidden_states: torch.Tensor,
|
| 422 |
-
|
| 423 |
keep_window_size: int = 2048,
|
| 424 |
-
dynamic_mask_ratio: float = 0.0,
|
| 425 |
attention_mask: Optional[torch.Tensor] = None,
|
| 426 |
):
|
| 427 |
"""
|
| 428 |
The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention.
|
| 429 |
|
| 430 |
-
Combine `
|
| 431 |
|
| 432 |
Args:
|
| 433 |
hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
|
| 434 |
-
|
| 435 |
keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
|
| 436 |
-
dynamic_mask_ratio (`float`): Ratio from 0.0 to 1.0 used to control the proportion of the dynamic mask filled with the minimum value.
|
| 437 |
attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
|
| 438 |
"""
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
attn_mask = attn_mask
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
return attn_mask
|
| 453 |
|
| 454 |
|
| 455 |
class DogeMLP(nn.Module):
|
| 456 |
-
def __init__(self, config
|
| 457 |
super().__init__()
|
| 458 |
-
self.
|
| 459 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 460 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 461 |
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
|
| 466 |
-
def forward(
|
| 467 |
-
self,
|
| 468 |
-
hidden_states: torch.Tensor,
|
| 469 |
-
**kwargs,
|
| 470 |
-
) -> torch.Tensor:
|
| 471 |
-
hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
|
| 472 |
-
return hidden_states
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
class DogeCDMoE(DogeMLP):
|
| 476 |
-
"""Cross Domain Mixture of Experts from 'Wonderful Matrices' paper."""
|
| 477 |
|
|
|
|
| 478 |
def __init__(self, config: DogeConfig):
|
| 479 |
-
super().__init__(
|
| 480 |
-
self.
|
|
|
|
| 481 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 482 |
|
| 483 |
self.num_experts = config.num_experts
|
|
|
|
| 484 |
self.top_k = config.num_experts_per_tok
|
| 485 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
# router gate for retrieval experts
|
| 488 |
-
self.router_gate = nn.Linear(self.
|
| 489 |
|
| 490 |
-
# experts
|
| 491 |
-
self.down_embed = nn.Embedding(self.num_experts, self.
|
| 492 |
-
self.up_embed = nn.Embedding(self.num_experts, self.
|
| 493 |
|
| 494 |
def forward(
|
| 495 |
self,
|
|
@@ -498,288 +409,169 @@ class DogeCDMoE(DogeMLP):
|
|
| 498 |
) -> torch.Tensor:
|
| 499 |
bsz, seq_len, _ = hidden_states.shape
|
| 500 |
|
| 501 |
-
# get routing
|
| 502 |
-
|
| 503 |
|
| 504 |
-
# get experts with the highest routing
|
| 505 |
-
(scores_x, scores_y), (indices_x, indices_y) =
|
| 506 |
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
| 507 |
all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)
|
| 508 |
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
| 509 |
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
| 510 |
-
scores,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 511 |
down_embed = self.down_embed(indices)
|
| 512 |
up_embed = self.up_embed(indices)
|
| 513 |
-
|
| 514 |
-
# mix experts states with cross domain states
|
| 515 |
experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1)
|
| 516 |
-
experts_weights = self.act_fn(experts_weights) *
|
| 517 |
experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1)
|
| 518 |
hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
|
| 519 |
hidden_states = hidden_states + experts_states
|
| 520 |
-
return hidden_states
|
| 521 |
|
| 522 |
|
| 523 |
-
class DogeDecoderLayer(
|
| 524 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 525 |
super().__init__()
|
| 526 |
self.hidden_dropout = config.hidden_dropout
|
| 527 |
|
| 528 |
-
self.
|
| 529 |
-
self.self_attn =
|
| 530 |
-
self.
|
| 531 |
|
| 532 |
-
self.
|
| 533 |
-
self.
|
| 534 |
-
self.
|
| 535 |
|
| 536 |
def forward(
|
| 537 |
self,
|
| 538 |
hidden_states: torch.Tensor,
|
|
|
|
| 539 |
attention_mask: Optional[torch.Tensor] = None,
|
| 540 |
position_ids: Optional[torch.LongTensor] = None,
|
| 541 |
-
past_key_value: Optional[
|
| 542 |
-
output_attentions: Optional[bool] = False,
|
| 543 |
use_cache: Optional[bool] = False,
|
| 544 |
cache_position: Optional[torch.LongTensor] = None,
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 548 |
# sequence transformation
|
| 549 |
residual = hidden_states
|
| 550 |
-
hidden_states = self.
|
| 551 |
hidden_states, self_attn_weights = self.self_attn(
|
| 552 |
hidden_states=hidden_states,
|
|
|
|
| 553 |
attention_mask=attention_mask,
|
| 554 |
position_ids=position_ids,
|
| 555 |
past_key_value=past_key_value,
|
| 556 |
-
output_attentions=output_attentions,
|
| 557 |
use_cache=use_cache,
|
| 558 |
cache_position=cache_position,
|
| 559 |
-
position_embeddings=position_embeddings,
|
| 560 |
**kwargs,
|
| 561 |
)
|
| 562 |
-
self_attn_weights = None
|
| 563 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 564 |
-
hidden_states = self.
|
| 565 |
|
| 566 |
# state transformation
|
| 567 |
residual = hidden_states
|
| 568 |
-
hidden_states = self.
|
| 569 |
-
hidden_states = self.
|
| 570 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 571 |
-
hidden_states = self.
|
| 572 |
-
|
| 573 |
-
outputs = (hidden_states,)
|
| 574 |
-
if output_attentions:
|
| 575 |
-
outputs += (self_attn_weights,)
|
| 576 |
-
|
| 577 |
-
return outputs
|
| 578 |
-
|
| 579 |
|
| 580 |
-
|
| 581 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 582 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 583 |
-
etc.)
|
| 584 |
-
|
| 585 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 586 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 587 |
-
and behavior.
|
| 588 |
-
|
| 589 |
-
Parameters:
|
| 590 |
-
config ([`DogeConfig`]):
|
| 591 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 592 |
-
load the weights associated with the model, only the configuration. Check out the
|
| 593 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 594 |
-
"""
|
| 595 |
|
| 596 |
|
| 597 |
-
@
|
| 598 |
-
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
| 599 |
-
DOGE_START_DOCSTRING,
|
| 600 |
-
)
|
| 601 |
class DogePreTrainedModel(PreTrainedModel):
|
| 602 |
-
|
| 603 |
base_model_prefix = "model"
|
| 604 |
supports_gradient_checkpointing = True
|
| 605 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 606 |
_skip_keys_device_placement = ["past_key_values"]
|
|
|
|
| 607 |
_supports_sdpa = True
|
| 608 |
_supports_flex_attn = True
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
|
| 613 |
def _init_weights(self, module):
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
if module
|
| 618 |
-
module.
|
| 619 |
-
elif isinstance(module,
|
| 620 |
-
module
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 628 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 629 |
-
it.
|
| 630 |
-
|
| 631 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 632 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 633 |
-
|
| 634 |
-
[What are input IDs?](../glossary#input-ids)
|
| 635 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 636 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 637 |
-
|
| 638 |
-
- 1 for tokens that are **not masked**,
|
| 639 |
-
- 0 for tokens that are **masked**.
|
| 640 |
-
|
| 641 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 642 |
-
|
| 643 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 644 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
| 645 |
-
|
| 646 |
-
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 647 |
-
`past_key_values`).
|
| 648 |
-
|
| 649 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 650 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 651 |
-
information on the default strategy.
|
| 652 |
-
|
| 653 |
-
- 1 indicates the head is **not masked**,
|
| 654 |
-
- 0 indicates the head is **masked**.
|
| 655 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 656 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 657 |
-
config.n_positions - 1]`.
|
| 658 |
-
|
| 659 |
-
[What are position IDs?](../glossary#position-ids)
|
| 660 |
-
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 661 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 662 |
-
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 663 |
-
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 664 |
-
|
| 665 |
-
Two formats are allowed:
|
| 666 |
-
- a [`~cache_utils.Cache`] instance, see our
|
| 667 |
-
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
| 668 |
-
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 669 |
-
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 670 |
-
cache format.
|
| 671 |
-
|
| 672 |
-
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 673 |
-
legacy cache format will be returned.
|
| 674 |
-
|
| 675 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 676 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 677 |
-
of shape `(batch_size, sequence_length)`.
|
| 678 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 679 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 680 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 681 |
-
model's internal embedding lookup matrix.
|
| 682 |
-
use_cache (`bool`, *optional*):
|
| 683 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 684 |
-
`past_key_values`).
|
| 685 |
-
output_attentions (`bool`, *optional*):
|
| 686 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 687 |
-
tensors for more detail.
|
| 688 |
-
output_hidden_states (`bool`, *optional*):
|
| 689 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 690 |
-
more detail.
|
| 691 |
-
return_dict (`bool`, *optional*):
|
| 692 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 693 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 694 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 695 |
-
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 696 |
-
the complete sequence length.
|
| 697 |
-
"""
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
@add_start_docstrings(
|
| 701 |
-
"The bare Doge Model outputting raw hidden-states without any specific head on top.",
|
| 702 |
-
DOGE_START_DOCSTRING,
|
| 703 |
-
)
|
| 704 |
class DogeModel(DogePreTrainedModel):
|
| 705 |
-
"""
|
| 706 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DogeDecoderLayer`]
|
| 707 |
-
|
| 708 |
-
Args:
|
| 709 |
-
config: DogeConfig
|
| 710 |
-
"""
|
| 711 |
-
|
| 712 |
def __init__(self, config: DogeConfig):
|
| 713 |
super().__init__(config)
|
| 714 |
-
self.config = config
|
| 715 |
self.padding_idx = config.pad_token_id
|
| 716 |
self.vocab_size = config.vocab_size
|
| 717 |
|
| 718 |
-
self.
|
| 719 |
-
self.rotary_emb = DogeRotaryEmbedding(config)
|
| 720 |
self.layers = nn.ModuleList(
|
| 721 |
[DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 722 |
)
|
| 723 |
-
self.
|
|
|
|
| 724 |
self.gradient_checkpointing = False
|
| 725 |
|
| 726 |
# Initialize weights and apply final processing
|
| 727 |
self.post_init()
|
| 728 |
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
def set_input_embeddings(self, value):
|
| 733 |
-
self.word_embed = value
|
| 734 |
-
|
| 735 |
-
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 736 |
def forward(
|
| 737 |
self,
|
| 738 |
-
input_ids: torch.LongTensor = None,
|
| 739 |
attention_mask: Optional[torch.Tensor] = None,
|
| 740 |
position_ids: Optional[torch.LongTensor] = None,
|
| 741 |
-
past_key_values: Optional[
|
| 742 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 743 |
use_cache: Optional[bool] = None,
|
| 744 |
-
output_attentions: Optional[bool] = None,
|
| 745 |
-
output_hidden_states: Optional[bool] = None,
|
| 746 |
-
return_dict: Optional[bool] = None,
|
| 747 |
cache_position: Optional[torch.LongTensor] = None,
|
| 748 |
-
**kwargs,
|
| 749 |
-
) ->
|
| 750 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 751 |
-
output_hidden_states = (
|
| 752 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 753 |
-
)
|
| 754 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 755 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 756 |
-
|
| 757 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 758 |
-
raise ValueError("You
|
| 759 |
-
|
| 760 |
-
if self.gradient_checkpointing and self.training and use_cache:
|
| 761 |
-
logger.warning_once(
|
| 762 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 763 |
-
)
|
| 764 |
-
use_cache = False
|
| 765 |
-
|
| 766 |
-
if inputs_embeds is None:
|
| 767 |
-
inputs_embeds = self.word_embed(input_ids)
|
| 768 |
|
| 769 |
if use_cache and past_key_values is None:
|
| 770 |
past_key_values = DynamicCache()
|
| 771 |
|
|
|
|
|
|
|
|
|
|
| 772 |
if cache_position is None:
|
| 773 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 774 |
cache_position = torch.arange(
|
| 775 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 776 |
)
|
| 777 |
-
|
| 778 |
if position_ids is None:
|
| 779 |
position_ids = cache_position.unsqueeze(0)
|
| 780 |
|
| 781 |
-
|
| 782 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 783 |
)
|
| 784 |
|
| 785 |
hidden_states = inputs_embeds
|
|
@@ -787,236 +579,185 @@ class DogeModel(DogePreTrainedModel):
|
|
| 787 |
# create position embeddings to be shared across the decoder layers
|
| 788 |
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 789 |
|
| 790 |
-
# decoder layers
|
| 791 |
-
all_hidden_states = () if output_hidden_states else None
|
| 792 |
-
all_self_attns = () if output_attentions else None
|
| 793 |
-
|
| 794 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
hidden_states,
|
| 813 |
-
attention_mask=causal_mask,
|
| 814 |
-
position_ids=position_ids,
|
| 815 |
-
past_key_value=past_key_values,
|
| 816 |
-
output_attentions=output_attentions,
|
| 817 |
-
use_cache=use_cache,
|
| 818 |
-
cache_position=cache_position,
|
| 819 |
-
position_embeddings=position_embeddings,
|
| 820 |
-
**kwargs,
|
| 821 |
-
)
|
| 822 |
|
| 823 |
-
hidden_states = layer_outputs[0]
|
| 824 |
|
| 825 |
-
|
| 826 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 827 |
|
| 828 |
-
|
|
|
|
|
|
|
| 829 |
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 833 |
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
)
|
| 840 |
-
return output if return_dict else output.to_tuple()
|
| 841 |
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
cache_position: torch.Tensor,
|
| 847 |
-
past_key_values: Cache,
|
| 848 |
-
output_attentions: bool,
|
| 849 |
-
):
|
| 850 |
-
# We have to provide attention_mask for dynamic mask computation
|
| 851 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 852 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 853 |
-
|
| 854 |
-
dtype, device = input_tensor.dtype, input_tensor.device
|
| 855 |
-
sequence_length = input_tensor.shape[1]
|
| 856 |
-
if using_static_cache:
|
| 857 |
-
target_length = past_key_values.get_max_cache_shape()
|
| 858 |
-
else:
|
| 859 |
-
target_length = (
|
| 860 |
-
attention_mask.shape[-1]
|
| 861 |
-
if isinstance(attention_mask, torch.Tensor)
|
| 862 |
-
else past_seen_tokens + sequence_length + 1
|
| 863 |
-
)
|
| 864 |
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
)
|
|
|
|
| 875 |
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
)
|
| 882 |
-
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 883 |
-
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 884 |
-
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 885 |
-
min_dtype = torch.finfo(dtype).min
|
| 886 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 887 |
-
|
| 888 |
-
return causal_mask
|
| 889 |
-
|
| 890 |
-
@staticmethod
|
| 891 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 892 |
-
attention_mask: torch.Tensor,
|
| 893 |
-
sequence_length: int,
|
| 894 |
-
target_length: int,
|
| 895 |
-
dtype: torch.dtype,
|
| 896 |
-
device: torch.device,
|
| 897 |
-
cache_position: torch.Tensor,
|
| 898 |
-
batch_size: int,
|
| 899 |
-
**kwargs,
|
| 900 |
-
):
|
| 901 |
-
"""
|
| 902 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 903 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 904 |
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
The target length: when generating with static cache, the mask should be as long as the static cache,
|
| 913 |
-
to account for the 0 padding, the part of the cache that is not filled yet.
|
| 914 |
-
dtype (`torch.dtype`):
|
| 915 |
-
The dtype to use for the 4D attention mask.
|
| 916 |
-
device (`torch.device`):
|
| 917 |
-
The device to plcae the 4D attention mask on.
|
| 918 |
-
cache_position (`torch.Tensor`):
|
| 919 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
| 920 |
-
batch_size (`torch.Tensor`):
|
| 921 |
-
Batch size.
|
| 922 |
-
"""
|
| 923 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
| 924 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 925 |
-
causal_mask = attention_mask
|
| 926 |
-
else:
|
| 927 |
-
min_dtype = torch.finfo(dtype).min
|
| 928 |
-
causal_mask = torch.full(
|
| 929 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 930 |
-
)
|
| 931 |
-
if sequence_length != 1:
|
| 932 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 933 |
-
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 934 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 935 |
-
if attention_mask is not None:
|
| 936 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 937 |
-
mask_length = attention_mask.shape[-1]
|
| 938 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 939 |
-
padding_mask = padding_mask == 0
|
| 940 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 941 |
-
padding_mask, min_dtype
|
| 942 |
-
)
|
| 943 |
|
| 944 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 945 |
|
| 946 |
|
|
|
|
| 947 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
| 948 |
_tied_weights_keys = ["lm_head.weight"]
|
| 949 |
_tp_plan = {"lm_head": "colwise_rep"}
|
|
|
|
| 950 |
|
| 951 |
-
def __init__(self, config
|
| 952 |
super().__init__(config)
|
| 953 |
-
self.config = config
|
| 954 |
self.model = DogeModel(config)
|
| 955 |
self.vocab_size = config.vocab_size
|
| 956 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
|
|
| 957 |
|
| 958 |
# Initialize weights and apply final processing
|
| 959 |
self.post_init()
|
| 960 |
|
| 961 |
-
def
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
def set_input_embeddings(self, value):
|
| 965 |
-
self.model.word_embed = value
|
| 966 |
-
|
| 967 |
-
def get_output_embeddings(self):
|
| 968 |
-
return self.lm_head
|
| 969 |
-
|
| 970 |
-
def set_output_embeddings(self, new_embeddings):
|
| 971 |
-
self.lm_head = new_embeddings
|
| 972 |
|
| 973 |
def get_decoder(self):
|
| 974 |
return self.model
|
| 975 |
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 980 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 981 |
def forward(
|
| 982 |
self,
|
| 983 |
-
input_ids: torch.LongTensor = None,
|
| 984 |
attention_mask: Optional[torch.Tensor] = None,
|
| 985 |
position_ids: Optional[torch.LongTensor] = None,
|
| 986 |
-
past_key_values: Optional[
|
| 987 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 988 |
labels: Optional[torch.LongTensor] = None,
|
| 989 |
use_cache: Optional[bool] = None,
|
| 990 |
-
output_attentions: Optional[bool] = None,
|
| 991 |
-
output_hidden_states: Optional[bool] = None,
|
| 992 |
-
return_dict: Optional[bool] = None,
|
| 993 |
cache_position: Optional[torch.LongTensor] = None,
|
| 994 |
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 995 |
-
|
| 996 |
-
|
|
|
|
| 997 |
r"""
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1003 |
-
|
| 1004 |
-
logits_to_keep (`int`, *optional*):
|
| 1005 |
-
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
| 1006 |
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
| 1007 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
| 1008 |
-
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
| 1009 |
-
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
| 1010 |
-
|
| 1011 |
-
Returns:
|
| 1012 |
|
| 1013 |
Example:
|
| 1014 |
|
| 1015 |
```python
|
| 1016 |
-
|
| 1017 |
|
| 1018 |
-
>>> model =
|
| 1019 |
-
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-
|
| 1020 |
|
| 1021 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1022 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
@@ -1026,156 +767,56 @@ class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
|
| 1026 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1027 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1028 |
```"""
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1032 |
)
|
| 1033 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1034 |
|
| 1035 |
-
# decoder
|
| 1036 |
-
outputs = self.model(
|
| 1037 |
input_ids=input_ids,
|
| 1038 |
attention_mask=attention_mask,
|
| 1039 |
position_ids=position_ids,
|
| 1040 |
past_key_values=past_key_values,
|
| 1041 |
inputs_embeds=inputs_embeds,
|
| 1042 |
use_cache=use_cache,
|
| 1043 |
-
output_attentions=output_attentions,
|
| 1044 |
-
output_hidden_states=output_hidden_states,
|
| 1045 |
-
return_dict=return_dict,
|
| 1046 |
cache_position=cache_position,
|
| 1047 |
**kwargs,
|
| 1048 |
)
|
| 1049 |
|
| 1050 |
-
hidden_states = outputs
|
| 1051 |
-
#
|
| 1052 |
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1053 |
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 1054 |
|
| 1055 |
loss = None
|
| 1056 |
if labels is not None:
|
| 1057 |
-
loss = self.loss_function(logits
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1062 |
|
| 1063 |
-
return
|
| 1064 |
loss=loss,
|
|
|
|
| 1065 |
logits=logits,
|
| 1066 |
past_key_values=outputs.past_key_values,
|
| 1067 |
hidden_states=outputs.hidden_states,
|
| 1068 |
attentions=outputs.attentions,
|
|
|
|
| 1069 |
)
|
| 1070 |
|
| 1071 |
|
| 1072 |
-
|
| 1073 |
-
|
| 1074 |
-
The Doge Model transformer with a sequence classification head on top (linear layer).
|
| 1075 |
-
|
| 1076 |
-
[`DogeForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1077 |
-
(e.g. GPT-2) do.
|
| 1078 |
-
|
| 1079 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1080 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1081 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1082 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1083 |
-
each row of the batch).
|
| 1084 |
-
""",
|
| 1085 |
-
DOGE_START_DOCSTRING,
|
| 1086 |
-
)
|
| 1087 |
-
class DogeForSequenceClassification(DogePreTrainedModel):
|
| 1088 |
-
def __init__(self, config: DogeConfig):
|
| 1089 |
-
super().__init__(config)
|
| 1090 |
-
self.num_labels = config.num_labels
|
| 1091 |
-
|
| 1092 |
-
self.model = DogeModel(config)
|
| 1093 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1094 |
-
self.config = config
|
| 1095 |
-
|
| 1096 |
-
# Initialize weights and apply final processing
|
| 1097 |
-
self.post_init()
|
| 1098 |
-
|
| 1099 |
-
def get_input_embeddings(self):
|
| 1100 |
-
return self.model.word_embed
|
| 1101 |
-
|
| 1102 |
-
def set_input_embeddings(self, value):
|
| 1103 |
-
self.model.word_embed = value
|
| 1104 |
-
|
| 1105 |
-
@add_start_docstrings_to_model_forward(DOGE_INPUTS_DOCSTRING)
|
| 1106 |
-
def forward(
|
| 1107 |
-
self,
|
| 1108 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 1109 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1110 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1111 |
-
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1112 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1113 |
-
labels: Optional[torch.LongTensor] = None,
|
| 1114 |
-
use_cache: Optional[bool] = None,
|
| 1115 |
-
output_attentions: Optional[bool] = None,
|
| 1116 |
-
output_hidden_states: Optional[bool] = None,
|
| 1117 |
-
return_dict: Optional[bool] = None,
|
| 1118 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1119 |
-
r"""
|
| 1120 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1121 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1122 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1123 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1124 |
-
"""
|
| 1125 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1126 |
-
|
| 1127 |
-
transformer_outputs = self.model(
|
| 1128 |
-
input_ids,
|
| 1129 |
-
attention_mask=attention_mask,
|
| 1130 |
-
position_ids=position_ids,
|
| 1131 |
-
past_key_values=past_key_values,
|
| 1132 |
-
inputs_embeds=inputs_embeds,
|
| 1133 |
-
use_cache=use_cache,
|
| 1134 |
-
output_attentions=output_attentions,
|
| 1135 |
-
output_hidden_states=output_hidden_states,
|
| 1136 |
-
return_dict=return_dict,
|
| 1137 |
-
)
|
| 1138 |
-
hidden_states = transformer_outputs[0]
|
| 1139 |
-
logits = self.score(hidden_states)
|
| 1140 |
-
|
| 1141 |
-
if input_ids is not None:
|
| 1142 |
-
batch_size = input_ids.shape[0]
|
| 1143 |
-
else:
|
| 1144 |
-
batch_size = inputs_embeds.shape[0]
|
| 1145 |
-
|
| 1146 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
| 1147 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1148 |
-
if self.config.pad_token_id is None:
|
| 1149 |
-
last_non_pad_token = -1
|
| 1150 |
-
elif input_ids is not None:
|
| 1151 |
-
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
|
| 1152 |
-
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
|
| 1153 |
-
token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
|
| 1154 |
-
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
|
| 1155 |
-
else:
|
| 1156 |
-
last_non_pad_token = -1
|
| 1157 |
-
logger.warning_once(
|
| 1158 |
-
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1159 |
-
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1160 |
-
)
|
| 1161 |
-
|
| 1162 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
|
| 1163 |
-
|
| 1164 |
-
loss = None
|
| 1165 |
-
if labels is not None:
|
| 1166 |
-
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
| 1167 |
-
|
| 1168 |
-
if not return_dict:
|
| 1169 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1170 |
-
return ((loss,) + output) if loss is not None else output
|
| 1171 |
-
|
| 1172 |
-
return SequenceClassifierOutputWithPast(
|
| 1173 |
-
loss=loss,
|
| 1174 |
-
logits=pooled_logits,
|
| 1175 |
-
past_key_values=transformer_outputs.past_key_values,
|
| 1176 |
-
hidden_states=transformer_outputs.hidden_states,
|
| 1177 |
-
attentions=transformer_outputs.attentions,
|
| 1178 |
-
)
|
| 1179 |
|
| 1180 |
|
| 1181 |
__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]
|
|
|
|
| 5 |
# modular_doge.py file directly. One of our CI enforces this.
|
| 6 |
# 馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃馃毃
|
| 7 |
# coding=utf-8
|
| 8 |
+
# Copyright 2025 Jingze Shi and the HuggingFace Inc. team. All rights reserved.
|
| 9 |
#
|
| 10 |
+
# The Doge family of small language models is trained by SmallDoge Team.
|
|
|
|
| 11 |
#
|
| 12 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 13 |
# you may not use this file except in compliance with the License.
|
|
|
|
| 22 |
# limitations under the License.
|
| 23 |
|
| 24 |
import math
|
| 25 |
+
from typing import Callable, Optional, Union
|
|
|
|
| 26 |
|
| 27 |
import torch
|
| 28 |
import torch.nn.functional as F
|
| 29 |
from torch import nn
|
| 30 |
|
| 31 |
from transformers.activations import ACT2FN
|
| 32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 33 |
from transformers.generation import GenerationMixin
|
| 34 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 35 |
+
from transformers.integrations.flex_attention import compile_friendly_flex_attention
|
| 36 |
+
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
| 37 |
+
from transformers.modeling_layers import GenericForSequenceClassification, GradientCheckpointingLayer
|
| 38 |
+
from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
|
| 39 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 40 |
+
from transformers.modeling_utils import AttentionInterface, PreTrainedModel
|
| 41 |
from transformers.processing_utils import Unpack
|
| 42 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available
|
| 43 |
+
from transformers.utils.generic import OutputRecorder, check_model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
from .configuration_doge import DogeConfig
|
| 45 |
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
if is_torch_flex_attn_available():
|
| 48 |
+
from torch.nn.attention.flex_attention import BlockMask
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 52 |
class DogeRMSNorm(nn.Module):
|
| 53 |
def __init__(self, hidden_size, eps=1e-6):
|
| 54 |
"""
|
|
|
|
| 85 |
def __init__(self, config: DogeConfig, device=None):
|
| 86 |
super().__init__()
|
| 87 |
# BC: "rope_type" was originally "type"
|
| 88 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 89 |
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 90 |
else:
|
| 91 |
self.rope_type = "default"
|
|
|
|
| 99 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 100 |
self.original_inv_freq = self.inv_freq
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
@torch.no_grad()
|
| 103 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 104 |
def forward(self, x, position_ids):
|
| 105 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
position_ids_expanded = position_ids[:, None, :].float()
|
| 107 |
+
|
| 108 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 109 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
|
|
|
| 110 |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 111 |
emb = torch.cat((freqs, freqs), dim=-1)
|
| 112 |
+
cos = emb.cos() * self.attention_scaling
|
| 113 |
+
sin = emb.sin() * self.attention_scaling
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 116 |
|
|
|
|
| 169 |
attention_mask: Optional[torch.Tensor],
|
| 170 |
scaling: float,
|
| 171 |
dropout: float = 0.0,
|
| 172 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 173 |
+
):
|
| 174 |
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 175 |
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 176 |
|
| 177 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 178 |
if attention_mask is not None:
|
| 179 |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 180 |
attn_weights = attn_weights + causal_mask
|
| 181 |
|
| 182 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 183 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 184 |
attn_output = torch.matmul(attn_weights, value_states)
|
| 185 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 186 |
|
| 187 |
return attn_output, attn_weights
|
| 188 |
|
| 189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
def flex_attention_forward(
|
| 191 |
module: nn.Module,
|
| 192 |
query: torch.Tensor,
|
| 193 |
key: torch.Tensor,
|
| 194 |
value: torch.Tensor,
|
| 195 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
| 196 |
scaling: Optional[float] = None,
|
|
|
|
| 197 |
softcap: Optional[float] = None,
|
| 198 |
head_mask: Optional[torch.Tensor] = None,
|
| 199 |
**kwargs,
|
| 200 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 201 |
+
block_mask = None
|
| 202 |
+
causal_mask = None
|
| 203 |
+
if isinstance(attention_mask, BlockMask):
|
| 204 |
+
block_mask = attention_mask
|
| 205 |
+
else:
|
| 206 |
+
causal_mask = attention_mask
|
| 207 |
+
|
| 208 |
+
if causal_mask is not None:
|
| 209 |
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
| 210 |
|
| 211 |
+
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
|
|
|
|
| 212 |
if softcap is not None:
|
| 213 |
score = softcap * torch.tanh(score / softcap)
|
| 214 |
if causal_mask is not None:
|
| 215 |
+
score = score + causal_mask[batch_idx][head_idx][q_idx][kv_idx]
|
| 216 |
if head_mask is not None:
|
| 217 |
+
score = score + head_mask[batch_idx][head_idx][0][0]
|
| 218 |
return score
|
| 219 |
|
| 220 |
+
attn_output, attention_weights = compile_friendly_flex_attention(
|
| 221 |
+
query,
|
| 222 |
+
key,
|
| 223 |
+
value,
|
| 224 |
+
score_mod=score_mod,
|
| 225 |
+
block_mask=block_mask,
|
| 226 |
enable_gqa=True,
|
| 227 |
scale=scaling,
|
| 228 |
# Last time checked on PyTorch == 2.5.1: Flex Attention always computes the lse regardless.
|
|
|
|
| 236 |
return attn_output, attention_weights
|
| 237 |
|
| 238 |
|
| 239 |
+
ALL_ATTENTION_FUNCTIONS = AttentionInterface()
|
| 240 |
+
ALL_ATTENTION_FUNCTIONS["doge_flex_attention"] = flex_attention_forward
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
class DogeAttention(nn.Module):
|
| 244 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 245 |
super().__init__()
|
| 246 |
self.config = config
|
|
|
|
| 250 |
self.scaling = self.head_dim**-0.5
|
| 251 |
self.attention_dropout = config.attention_dropout
|
| 252 |
self.keep_window_size = config.keep_window_size
|
|
|
|
| 253 |
|
| 254 |
self.q_proj = nn.Linear(
|
| 255 |
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
| 256 |
)
|
| 257 |
self.k_proj = nn.Linear(
|
| 258 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 259 |
)
|
| 260 |
self.v_proj = nn.Linear(
|
| 261 |
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
| 262 |
)
|
| 263 |
# dynamic mask for the QK^T attention weights matrix
|
| 264 |
self.A = nn.Parameter(torch.zeros(config.num_attention_heads))
|
| 265 |
self.dt_proj = nn.Linear(
|
| 266 |
+
config.num_key_value_heads * self.head_dim, config.num_attention_heads, bias=config.attention_bias
|
| 267 |
)
|
| 268 |
self.o_proj = nn.Linear(
|
| 269 |
+
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
|
| 270 |
)
|
| 271 |
|
| 272 |
def forward(
|
| 273 |
self,
|
| 274 |
hidden_states: torch.Tensor,
|
| 275 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 276 |
attention_mask: Optional[torch.Tensor] = None,
|
| 277 |
past_key_value: Optional[Cache] = None,
|
| 278 |
cache_position: Optional[torch.LongTensor] = None,
|
| 279 |
**kwargs,
|
| 280 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 281 |
input_shape = hidden_states.shape[:-1]
|
| 282 |
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 283 |
|
|
|
|
| 297 |
dt_states = self.dt_proj(
|
| 298 |
value_states.transpose(1, 2).reshape(value_states.shape[0], value_states.shape[-2], -1)
|
| 299 |
)
|
| 300 |
+
dt_states = torch.exp(self.A * F.softplus(dt_states)).transpose(-1, -2)
|
| 301 |
attn_mask = self.prepare_dynamic_mask(
|
| 302 |
hidden_states=hidden_states,
|
| 303 |
+
dt_states=dt_states,
|
| 304 |
keep_window_size=self.keep_window_size,
|
|
|
|
| 305 |
attention_mask=attention_mask,
|
| 306 |
)
|
| 307 |
|
| 308 |
attention_interface: Callable = eager_attention_forward
|
| 309 |
if self.config._attn_implementation != "eager":
|
| 310 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
attn_output, attn_weights = attention_interface(
|
| 313 |
self,
|
|
|
|
| 327 |
def prepare_dynamic_mask(
|
| 328 |
self,
|
| 329 |
hidden_states: torch.Tensor,
|
| 330 |
+
dt_states: torch.Tensor,
|
| 331 |
keep_window_size: int = 2048,
|
|
|
|
| 332 |
attention_mask: Optional[torch.Tensor] = None,
|
| 333 |
):
|
| 334 |
"""
|
| 335 |
The core idea of DMA is to calculate the dynamic attention mask to mask the tokens that should be masked, so as to form sparse attention.
|
| 336 |
|
| 337 |
+
Combine `dt_states` with `attention_mask` to generate the final `attn_mask`.
|
| 338 |
|
| 339 |
Args:
|
| 340 |
hidden_states (`torch.Tensor`): The input hidden_states, used to determine the minimum value of the current input precision.
|
| 341 |
+
dt_states (`torch.Tensor`): dt_states of shape `(batch_size, num_heads, key_sequence_length)`.
|
| 342 |
keep_window_size (`int`): The window size of tokens that are not dynamically masked, and dynamic masking is only performed when the sequence length exceeds this value.
|
|
|
|
| 343 |
attention_mask (`torch.Tensor`, *optional*): attention mask of shape `(batch_size, 1, query_sequence_length, key_sequence_length)`.
|
| 344 |
"""
|
| 345 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
| 346 |
+
dtype = hidden_states.dtype
|
| 347 |
+
attn_mask = dt_states[:, :, None, :].expand(
|
| 348 |
+
-1, -1, hidden_states.shape[1], -1
|
| 349 |
+
) # [batch_size, num_heads, query_len, key_len]
|
| 350 |
+
if attention_mask is not None and not isinstance(attention_mask, BlockMask):
|
| 351 |
+
if attention_mask.dtype == torch.bool:
|
| 352 |
+
dtype = hidden_states.dtype
|
| 353 |
+
attention_mask = torch.where(
|
| 354 |
+
attention_mask, torch.tensor(0.0, device=attention_mask.device, dtype=dtype), min_dtype
|
| 355 |
+
)
|
| 356 |
+
attn_mask = attn_mask.masked_fill(attention_mask[:, :, :, : attn_mask.shape[-1]] != 0, min_dtype)
|
| 357 |
+
if attn_mask.shape[-1] > keep_window_size:
|
| 358 |
+
active_mask = torch.zeros_like(attn_mask, dtype=dtype, device=attn_mask.device)
|
| 359 |
+
topk_indices = torch.topk(attn_mask, keep_window_size, dim=-1, largest=True, sorted=False).indices
|
| 360 |
+
active_mask = active_mask.scatter(-1, topk_indices, 1.0)
|
| 361 |
+
attn_mask = attn_mask.masked_fill(active_mask == 0.0, min_dtype)
|
| 362 |
return attn_mask
|
| 363 |
|
| 364 |
|
| 365 |
class DogeMLP(nn.Module):
|
| 366 |
+
def __init__(self, config):
|
| 367 |
super().__init__()
|
| 368 |
+
self.config = config
|
| 369 |
+
self.hidden_size = config.hidden_size
|
| 370 |
+
self.intermediate_size = config.intermediate_size
|
| 371 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 372 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 373 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
| 374 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 375 |
|
| 376 |
+
def forward(self, x):
|
| 377 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 378 |
+
return down_proj
|
| 379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
|
| 381 |
+
class DogeCDMoE(nn.Module):
|
| 382 |
def __init__(self, config: DogeConfig):
|
| 383 |
+
super().__init__()
|
| 384 |
+
self.hidden_size = config.hidden_size
|
| 385 |
+
self.intermediate_size = config.intermediate_size
|
| 386 |
self.act_fn = ACT2FN[config.hidden_act]
|
| 387 |
|
| 388 |
self.num_experts = config.num_experts
|
| 389 |
+
self.num_keys = math.floor(math.sqrt(self.num_experts))
|
| 390 |
self.top_k = config.num_experts_per_tok
|
| 391 |
+
self.norm_topk_prob = config.norm_topk_prob
|
| 392 |
+
|
| 393 |
+
# shared expert
|
| 394 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 395 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
| 396 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
| 397 |
|
| 398 |
# router gate for retrieval experts
|
| 399 |
+
self.router_gate = nn.Linear(self.hidden_size, self.num_keys * 2, bias=False)
|
| 400 |
|
| 401 |
+
# routed experts
|
| 402 |
+
self.down_embed = nn.Embedding(self.num_experts, self.hidden_size)
|
| 403 |
+
self.up_embed = nn.Embedding(self.num_experts, self.hidden_size)
|
| 404 |
|
| 405 |
def forward(
|
| 406 |
self,
|
|
|
|
| 409 |
) -> torch.Tensor:
|
| 410 |
bsz, seq_len, _ = hidden_states.shape
|
| 411 |
|
| 412 |
+
# get routing logits with router gate
|
| 413 |
+
router_logits = self.router_gate(hidden_states).view(2, bsz * seq_len, -1)
|
| 414 |
|
| 415 |
+
# get experts with the highest routing logits
|
| 416 |
+
(scores_x, scores_y), (indices_x, indices_y) = router_logits.topk(self.num_keys, dim=-1)
|
| 417 |
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
| 418 |
all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)
|
| 419 |
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
| 420 |
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
| 421 |
+
scores, position_indices = all_scores.topk(self.top_k, dim=-1)
|
| 422 |
+
indices = all_indices.gather(-1, position_indices)
|
| 423 |
+
routing_weights = F.softmax(scores, dim=-1)
|
| 424 |
+
if self.norm_topk_prob:
|
| 425 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 426 |
+
|
| 427 |
+
# mix routed experts states with shared expert states
|
| 428 |
down_embed = self.down_embed(indices)
|
| 429 |
up_embed = self.up_embed(indices)
|
|
|
|
|
|
|
| 430 |
experts_weights = torch.matmul(down_embed, hidden_states.view(bsz * seq_len, -1, 1)).view(bsz * seq_len, -1)
|
| 431 |
+
experts_weights = self.act_fn(experts_weights) * routing_weights
|
| 432 |
experts_states = torch.matmul(experts_weights.view(bsz * seq_len, 1, -1), up_embed).view(bsz, seq_len, -1)
|
| 433 |
hidden_states = self.down_proj(self.act_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states))
|
| 434 |
hidden_states = hidden_states + experts_states
|
| 435 |
+
return hidden_states, router_logits
|
| 436 |
|
| 437 |
|
| 438 |
+
class DogeDecoderLayer(GradientCheckpointingLayer):
|
| 439 |
def __init__(self, config: DogeConfig, layer_idx: Optional[int] = None):
|
| 440 |
super().__init__()
|
| 441 |
self.hidden_dropout = config.hidden_dropout
|
| 442 |
|
| 443 |
+
self.input_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 444 |
+
self.self_attn = DogeAttention(config=config, layer_idx=layer_idx)
|
| 445 |
+
self.input_residual = nn.Parameter(torch.ones(config.hidden_size))
|
| 446 |
|
| 447 |
+
self.post_attention_layernorm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 448 |
+
self.mlp = DogeMLP(config) if not config.is_moe else DogeCDMoE(config)
|
| 449 |
+
self.post_attention_residual = nn.Parameter(torch.ones(config.hidden_size))
|
| 450 |
|
| 451 |
def forward(
|
| 452 |
self,
|
| 453 |
hidden_states: torch.Tensor,
|
| 454 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 455 |
attention_mask: Optional[torch.Tensor] = None,
|
| 456 |
position_ids: Optional[torch.LongTensor] = None,
|
| 457 |
+
past_key_value: Optional[tuple[torch.Tensor]] = None,
|
|
|
|
| 458 |
use_cache: Optional[bool] = False,
|
| 459 |
cache_position: Optional[torch.LongTensor] = None,
|
| 460 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 461 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
| 462 |
# sequence transformation
|
| 463 |
residual = hidden_states
|
| 464 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 465 |
hidden_states, self_attn_weights = self.self_attn(
|
| 466 |
hidden_states=hidden_states,
|
| 467 |
+
position_embeddings=position_embeddings,
|
| 468 |
attention_mask=attention_mask,
|
| 469 |
position_ids=position_ids,
|
| 470 |
past_key_value=past_key_value,
|
|
|
|
| 471 |
use_cache=use_cache,
|
| 472 |
cache_position=cache_position,
|
|
|
|
| 473 |
**kwargs,
|
| 474 |
)
|
|
|
|
| 475 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 476 |
+
hidden_states = self.input_residual * residual + hidden_states
|
| 477 |
|
| 478 |
# state transformation
|
| 479 |
residual = hidden_states
|
| 480 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 481 |
+
hidden_states = self.mlp(hidden_states)
|
| 482 |
hidden_states = F.dropout(hidden_states, p=self.hidden_dropout, training=self.training)
|
| 483 |
+
hidden_states = self.post_attention_residual * residual + hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
+
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
|
| 488 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
| 489 |
class DogePreTrainedModel(PreTrainedModel):
|
| 490 |
+
config: DogeConfig
|
| 491 |
base_model_prefix = "model"
|
| 492 |
supports_gradient_checkpointing = True
|
| 493 |
_no_split_modules = ["DogeDecoderLayer"]
|
| 494 |
_skip_keys_device_placement = ["past_key_values"]
|
| 495 |
+
_supports_flash_attn = False
|
| 496 |
_supports_sdpa = True
|
| 497 |
_supports_flex_attn = True
|
| 498 |
+
_can_compile_fullgraph = False
|
| 499 |
+
_supports_attention_backend = True
|
| 500 |
+
_can_record_outputs = {
|
| 501 |
+
"router_logits": OutputRecorder(DogeCDMoE, index=1),
|
| 502 |
+
"hidden_states": DogeDecoderLayer,
|
| 503 |
+
"attentions": DogeAttention,
|
| 504 |
+
}
|
| 505 |
|
| 506 |
def _init_weights(self, module):
|
| 507 |
+
"""Initialize the weights"""
|
| 508 |
+
super()._init_weights(module)
|
| 509 |
+
if isinstance(module, DogeAttention):
|
| 510 |
+
if hasattr(module, "A"):
|
| 511 |
+
module.A.data.zero_()
|
| 512 |
+
elif isinstance(module, DogeDecoderLayer):
|
| 513 |
+
if hasattr(module, "input_residual"):
|
| 514 |
+
module.input_residual.data.fill_(1.0)
|
| 515 |
+
if hasattr(module, "post_attention_residual"):
|
| 516 |
+
module.post_attention_residual.data.fill_(1.0)
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 520 |
class DogeModel(DogePreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 521 |
def __init__(self, config: DogeConfig):
|
| 522 |
super().__init__(config)
|
|
|
|
| 523 |
self.padding_idx = config.pad_token_id
|
| 524 |
self.vocab_size = config.vocab_size
|
| 525 |
|
| 526 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
|
|
| 527 |
self.layers = nn.ModuleList(
|
| 528 |
[DogeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 529 |
)
|
| 530 |
+
self.norm = DogeRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 531 |
+
self.rotary_emb = DogeRotaryEmbedding(config=config)
|
| 532 |
self.gradient_checkpointing = False
|
| 533 |
|
| 534 |
# Initialize weights and apply final processing
|
| 535 |
self.post_init()
|
| 536 |
|
| 537 |
+
@check_model_inputs
|
| 538 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
def forward(
|
| 540 |
self,
|
| 541 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 542 |
attention_mask: Optional[torch.Tensor] = None,
|
| 543 |
position_ids: Optional[torch.LongTensor] = None,
|
| 544 |
+
past_key_values: Optional[Cache] = None,
|
| 545 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 546 |
use_cache: Optional[bool] = None,
|
|
|
|
|
|
|
|
|
|
| 547 |
cache_position: Optional[torch.LongTensor] = None,
|
| 548 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 549 |
+
) -> MoeModelOutputWithPast:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 551 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 552 |
|
| 553 |
if use_cache and past_key_values is None:
|
| 554 |
past_key_values = DynamicCache()
|
| 555 |
|
| 556 |
+
if inputs_embeds is None:
|
| 557 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 558 |
+
|
| 559 |
if cache_position is None:
|
| 560 |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 561 |
cache_position = torch.arange(
|
| 562 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 563 |
)
|
|
|
|
| 564 |
if position_ids is None:
|
| 565 |
position_ids = cache_position.unsqueeze(0)
|
| 566 |
|
| 567 |
+
mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
|
| 568 |
+
causal_mask = mask_function(
|
| 569 |
+
config=self.config,
|
| 570 |
+
input_embeds=inputs_embeds,
|
| 571 |
+
attention_mask=attention_mask,
|
| 572 |
+
cache_position=cache_position,
|
| 573 |
+
past_key_values=past_key_values,
|
| 574 |
+
position_ids=position_ids,
|
| 575 |
)
|
| 576 |
|
| 577 |
hidden_states = inputs_embeds
|
|
|
|
| 579 |
# create position embeddings to be shared across the decoder layers
|
| 580 |
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 582 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 583 |
+
hidden_states = decoder_layer(
|
| 584 |
+
hidden_states,
|
| 585 |
+
position_embeddings=position_embeddings,
|
| 586 |
+
attention_mask=causal_mask,
|
| 587 |
+
position_ids=position_ids,
|
| 588 |
+
past_key_value=past_key_values,
|
| 589 |
+
use_cache=use_cache,
|
| 590 |
+
cache_position=cache_position,
|
| 591 |
+
**kwargs,
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
hidden_states = self.norm(hidden_states)
|
| 595 |
+
|
| 596 |
+
return MoeModelOutputWithPast( # only diff with Mistral is the output type, we need MoE
|
| 597 |
+
last_hidden_state=hidden_states,
|
| 598 |
+
past_key_values=past_key_values,
|
| 599 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 600 |
|
|
|
|
| 601 |
|
| 602 |
+
def load_balancing_loss_func(
|
| 603 |
+
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
|
| 604 |
+
num_experts: Optional[int] = None,
|
| 605 |
+
num_keys: Optional[int] = None,
|
| 606 |
+
top_k: int = 2,
|
| 607 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 608 |
+
) -> Union[torch.Tensor, int]:
|
| 609 |
+
r"""
|
| 610 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 611 |
|
| 612 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
| 613 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 614 |
+
experts is too unbalanced.
|
| 615 |
|
| 616 |
+
Args:
|
| 617 |
+
gate_logits:
|
| 618 |
+
Logits from the `router_gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
| 619 |
+
shape [2, batch_size * sequence_length, num_keys].
|
| 620 |
+
num_experts:
|
| 621 |
+
Number of experts
|
| 622 |
+
num_keys:
|
| 623 |
+
Number of keys
|
| 624 |
+
top_k:
|
| 625 |
+
The number of experts to route per-token, can be also interpreted as the `top-k` routing
|
| 626 |
+
parameter.
|
| 627 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 628 |
+
The attention_mask used in forward function
|
| 629 |
+
shape [batch_size X sequence_length] if not None.
|
| 630 |
|
| 631 |
+
Returns:
|
| 632 |
+
The auxiliary loss.
|
| 633 |
+
"""
|
| 634 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
| 635 |
+
return 0
|
|
|
|
|
|
|
| 636 |
|
| 637 |
+
compute_dtype = gate_logits[0].dtype
|
| 638 |
+
compute_device = gate_logits[0].device
|
| 639 |
+
all_expert_indices = []
|
| 640 |
+
all_routing_weights = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
|
| 642 |
+
for layer_gate_logits in gate_logits:
|
| 643 |
+
layer_gate_logits = layer_gate_logits.to(compute_device)
|
| 644 |
+
|
| 645 |
+
(scores_x, scores_y), (indices_x, indices_y) = layer_gate_logits.topk(num_keys, dim=-1)
|
| 646 |
+
|
| 647 |
+
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
| 648 |
+
all_indices = indices_x.unsqueeze(-1) * num_keys + indices_y.unsqueeze(-2)
|
| 649 |
+
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
| 650 |
+
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
| 651 |
+
|
| 652 |
+
_, position_indices = all_scores.topk(top_k, dim=-1)
|
| 653 |
+
expert_indices = all_indices.gather(-1, position_indices)
|
| 654 |
+
|
| 655 |
+
routing_weights = F.softmax(all_scores, dim=-1)
|
| 656 |
+
|
| 657 |
+
all_expert_indices.append(expert_indices)
|
| 658 |
+
all_routing_weights.append(routing_weights)
|
| 659 |
+
all_expert_indices = torch.cat(all_expert_indices, dim=0)
|
| 660 |
+
all_routing_weights = torch.cat(all_routing_weights, dim=0)
|
| 661 |
+
|
| 662 |
+
if attention_mask is None:
|
| 663 |
+
# Compute the percentage of tokens routed to each experts
|
| 664 |
+
all_expert_indices = all_expert_indices.view(-1)
|
| 665 |
+
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
|
| 666 |
+
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
|
| 667 |
+
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / all_expert_indices.shape[0]
|
| 668 |
+
|
| 669 |
+
# Compute the average probability of routing to these experts
|
| 670 |
+
router_prob_per_expert = torch.mean(all_routing_weights, dim=0)
|
| 671 |
+
else:
|
| 672 |
+
batch_size, sequence_length = attention_mask.shape
|
| 673 |
+
num_hidden_layers = len(gate_logits)
|
| 674 |
+
|
| 675 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
| 676 |
+
expert_attention_mask = (
|
| 677 |
+
attention_mask[None, :, :, None]
|
| 678 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k))
|
| 679 |
+
.reshape(-1)
|
| 680 |
+
.to(compute_device)
|
| 681 |
)
|
| 682 |
+
all_expert_indices = all_expert_indices.view(-1)[expert_attention_mask.bool()]
|
| 683 |
|
| 684 |
+
# Compute the percentage of tokens routed to each experts
|
| 685 |
+
tokens_per_expert = torch.zeros(num_experts, dtype=compute_dtype, device=compute_device)
|
| 686 |
+
pad = torch.ones_like(all_expert_indices, dtype=compute_dtype, device=compute_device)
|
| 687 |
+
tokens_per_expert = tokens_per_expert.scatter_add_(0, all_expert_indices, pad) / torch.sum(
|
| 688 |
+
expert_attention_mask
|
| 689 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 690 |
|
| 691 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
| 692 |
+
router_per_expert_attention_mask = (
|
| 693 |
+
attention_mask[None, :, :, None]
|
| 694 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
| 695 |
+
.reshape(-1, num_experts)
|
| 696 |
+
.to(compute_device)
|
| 697 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
|
| 699 |
+
# Compute the average probability of routing to these experts
|
| 700 |
+
router_prob_per_expert = torch.sum(all_routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
| 701 |
+
router_per_expert_attention_mask, dim=0
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert)
|
| 705 |
+
return overall_loss * num_experts
|
| 706 |
|
| 707 |
|
| 708 |
+
@auto_docstring
|
| 709 |
class DogeForCausalLM(DogePreTrainedModel, GenerationMixin):
|
| 710 |
_tied_weights_keys = ["lm_head.weight"]
|
| 711 |
_tp_plan = {"lm_head": "colwise_rep"}
|
| 712 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 713 |
|
| 714 |
+
def __init__(self, config):
|
| 715 |
super().__init__(config)
|
|
|
|
| 716 |
self.model = DogeModel(config)
|
| 717 |
self.vocab_size = config.vocab_size
|
| 718 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 719 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 720 |
+
self.num_experts = config.num_experts
|
| 721 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 722 |
|
| 723 |
# Initialize weights and apply final processing
|
| 724 |
self.post_init()
|
| 725 |
|
| 726 |
+
def set_decoder(self, decoder):
|
| 727 |
+
self.model = decoder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
|
| 729 |
def get_decoder(self):
|
| 730 |
return self.model
|
| 731 |
|
| 732 |
+
@can_return_tuple
|
| 733 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
| 734 |
def forward(
|
| 735 |
self,
|
| 736 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 737 |
attention_mask: Optional[torch.Tensor] = None,
|
| 738 |
position_ids: Optional[torch.LongTensor] = None,
|
| 739 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None,
|
| 740 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 741 |
labels: Optional[torch.LongTensor] = None,
|
| 742 |
use_cache: Optional[bool] = None,
|
|
|
|
|
|
|
|
|
|
| 743 |
cache_position: Optional[torch.LongTensor] = None,
|
| 744 |
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 745 |
+
output_router_logits: Optional[bool] = None,
|
| 746 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 747 |
+
) -> MoeCausalLMOutputWithPast:
|
| 748 |
r"""
|
| 749 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 750 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 751 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 752 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 753 |
|
| 754 |
Example:
|
| 755 |
|
| 756 |
```python
|
| 757 |
+
>>> from transformers import AutoTokenizer, DogeForCausalLM
|
| 758 |
|
| 759 |
+
>>> model = DogeForCausalLM.from_pretrained("SmallDoge/Doge-320M")
|
| 760 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M")
|
| 761 |
|
| 762 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 763 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
| 767 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 768 |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 769 |
```"""
|
| 770 |
+
output_router_logits = (
|
| 771 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
|
|
| 772 |
)
|
|
|
|
| 773 |
|
| 774 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 775 |
+
outputs: MoeModelOutputWithPast = self.model(
|
| 776 |
input_ids=input_ids,
|
| 777 |
attention_mask=attention_mask,
|
| 778 |
position_ids=position_ids,
|
| 779 |
past_key_values=past_key_values,
|
| 780 |
inputs_embeds=inputs_embeds,
|
| 781 |
use_cache=use_cache,
|
|
|
|
|
|
|
|
|
|
| 782 |
cache_position=cache_position,
|
| 783 |
**kwargs,
|
| 784 |
)
|
| 785 |
|
| 786 |
+
hidden_states = outputs.last_hidden_state
|
| 787 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 788 |
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 789 |
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 790 |
|
| 791 |
loss = None
|
| 792 |
if labels is not None:
|
| 793 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
|
| 794 |
+
|
| 795 |
+
aux_loss = None
|
| 796 |
+
if output_router_logits:
|
| 797 |
+
aux_loss = load_balancing_loss_func(
|
| 798 |
+
outputs.router_logits,
|
| 799 |
+
self.num_experts,
|
| 800 |
+
math.floor(math.sqrt(self.num_experts)),
|
| 801 |
+
self.num_experts_per_tok,
|
| 802 |
+
attention_mask,
|
| 803 |
+
)
|
| 804 |
+
if labels is not None:
|
| 805 |
+
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
|
| 806 |
|
| 807 |
+
return MoeCausalLMOutputWithPast(
|
| 808 |
loss=loss,
|
| 809 |
+
aux_loss=aux_loss,
|
| 810 |
logits=logits,
|
| 811 |
past_key_values=outputs.past_key_values,
|
| 812 |
hidden_states=outputs.hidden_states,
|
| 813 |
attentions=outputs.attentions,
|
| 814 |
+
router_logits=outputs.router_logits,
|
| 815 |
)
|
| 816 |
|
| 817 |
|
| 818 |
+
class DogeForSequenceClassification(GenericForSequenceClassification, DogePreTrainedModel):
|
| 819 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
|
| 821 |
|
| 822 |
__all__ = ["DogeForCausalLM", "DogeModel", "DogePreTrainedModel", "DogeForSequenceClassification"]
|