Snivellus789 commited on
Commit
bc5340b
1 Parent(s): bff580f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:1500
13
+ - loss:BatchAllTripletLoss
14
+ widget:
15
+ - source_sentence: 实现一段代码,将给定短语中的每个单词按字母顺序排列,然后按照每个单词首字母的字典顺序对这些单词进行排序,并保留每个单词中字符的原始顺序。
16
+ sentences:
17
+ - 可以给出小猫、小狗和小兔的年龄对温度的适应度和健康的影响的代码吗?
18
+ - 绘制一个5x5的矩阵,矩阵中的单元格颜色交替,模式如下所描述(黑=实心块,白=空白块):
19
+ - "Write a Java program that simulates a basic text-based RPG (Role-Playing Game)\
20
+ \ with the following features:\n - Character creation: allow the user to choose\
21
+ \ a name, class, and starting attributes.\n - Combat system: implement turn-based\
22
+ \ combat against randomly generated enemies.\n - Leveling up: increase character\
23
+ \ attributes based on experience points gained from defeating enemies.\n - Inventory\
24
+ \ system: collect items dropped by defeated enemies and manage them in an inventory\
25
+ \ menu.\n "
26
+ - source_sentence: 'Create a HTML page with an ordered list of items using Five items:
27
+ apple, banana, orange, strawberry, and lemon.'
28
+ sentences:
29
+ - 'How can we modify the given Ruby code to determine if a candidate fulfills all
30
+ the eligibility criteria for the US presidency? Specifically, in addition to the
31
+ age requirement of 35 years, we also need to check if the candidate is a natural-born
32
+ citizen and has been a resident of the United States for at least 14 years. Can
33
+ you suggest a more optimized code to accomplish this task? '
34
+ - 从系统生物学的视角解读生物科技的重要性。
35
+ - 为一家以室内植物为主的植物店计划一场营销活动。
36
+ - source_sentence: 请使用尽可能简单的语言解释主体-客体模型(Subject-Object Model)。
37
+ sentences:
38
+ - 'Generate an algorithm for the game Hangman. '
39
+ - 如何使用 JavaScript 将两个 HTML 元素互换位置?
40
+ - 'In Swift, what function can I use to shorten the sentence "I''m feeling kind
41
+ of tired after having worked all day" while maintaining the same meaning and tone?
42
+ Can you provide an example of the shortened sentence using the function? '
43
+ - source_sentence: 在一个Dockerfile中,何时使用ADD指令与COPY指令?
44
+ sentences:
45
+ - 在给定的数列中寻找子数组,使其元素和最大。
46
+ - 'In an Excel spreadsheet that contains information about employees, there is a
47
+ column for job titles. John''s job title is listed as "Manager." Add a description
48
+ of John''s responsibilities to the sentence "John was a" using an Excel formula. '
49
+ - 多项式p(z) = z^3 + Az^2 + Bz + C为复数系数多项式。如果我们知道A、B、C为实数,而p根存在两个复数根r1和r2,第三个根也是它们的共轭复数r3。证明虚部非零。
50
+ - source_sentence: 解析三种大数据分析工具,请包括使用案例。
51
+ sentences:
52
+ - "How can the traveler determine the correct number of open hands after the 2021st\
53
+ \ gesture based on the pattern provided by the villagers? \nHere is a possible\
54
+ \ solution in Ruby:\nopen_hands = 1\nclosed_hands = 1\n(1..2021).each do |i|\n\
55
+ \ if i % 2 == 1\n closed_hands += open_hands\n open_hands = closed_hands\
56
+ \ - open_hands\n else\n open_hands += closed_hands\n closed_hands = open_hands\
57
+ \ - closed_hands\n end\nend\nputs \"After the 2021st gesture, the number of open\
58
+ \ hands is #{open_hands}.\" \nCan you explain how this Ruby code works to solve\
59
+ \ the puzzle posed by the villagers? "
60
+ - 'How can I use C# code to simulate the discovery of a rare and valuable book collection
61
+ secretly housed in a local library, and then capture the town''s reaction to the
62
+ discovery? '
63
+ - 'How can I create a stylish outfit that incorporates intricate embroidery patterns
64
+ and luxurious fabric, while also being budget-friendly? Can you provide a creative
65
+ solution using Ruby code that balances affordability and elegance?
66
+
67
+ For example, you could use the following code to search for affordable fabric
68
+ options and embroidery patterns:
69
+
70
+ ```ruby
71
+
72
+ require ''etsy''
73
+
74
+ # Search for affordable fabrics on Etsy
75
+
76
+ results = Etsy::Search.new(''affordable fabric'', :includes => [:Images], :price_max
77
+ => 50).results
78
+
79
+ # Search for intricate embroidery patterns on Etsy
80
+
81
+ embroidery_results = Etsy::Search.new(''intricate embroidery pattern'', :includes
82
+ => [:Images], :price_max => 100).results
83
+
84
+ # Choose a fabric and embroidery pattern to use in the outfit
85
+
86
+ chosen_fabric = results.sample
87
+
88
+ chosen_embroidery = embroidery_results.sample
89
+
90
+ # Use the chosen fabric and embroidery pattern to create a stylish outfit
91
+
92
+ # ...
93
+
94
+ ```
95
+
96
+ Can you provide additional code and reasoning to complete the solution? '
97
+ ---
98
+
99
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
100
+
101
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
102
+
103
+ ## Model Details
104
+
105
+ ### Model Description
106
+ - **Model Type:** Sentence Transformer
107
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
108
+ - **Maximum Sequence Length:** 512 tokens
109
+ - **Output Dimensionality:** 384 tokens
110
+ - **Similarity Function:** Cosine Similarity
111
+ <!-- - **Training Dataset:** Unknown -->
112
+ <!-- - **Language:** Unknown -->
113
+ <!-- - **License:** Unknown -->
114
+
115
+ ### Model Sources
116
+
117
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
118
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
119
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
120
+
121
+ ### Full Model Architecture
122
+
123
+ ```
124
+ SentenceTransformer(
125
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
126
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
127
+ (2): Normalize()
128
+ )
129
+ ```
130
+
131
+ ## Usage
132
+
133
+ ### Direct Usage (Sentence Transformers)
134
+
135
+ First install the Sentence Transformers library:
136
+
137
+ ```bash
138
+ pip install -U sentence-transformers
139
+ ```
140
+
141
+ Then you can load this model and run inference.
142
+ ```python
143
+ from sentence_transformers import SentenceTransformer
144
+
145
+ # Download from the 🤗 Hub
146
+ model = SentenceTransformer("Snivellus789/router-embedding-tuned-2")
147
+ # Run inference
148
+ sentences = [
149
+ '解析三种大数据分析工具,请包括使用案例。',
150
+ "How can I create a stylish outfit that incorporates intricate embroidery patterns and luxurious fabric, while also being budget-friendly? Can you provide a creative solution using Ruby code that balances affordability and elegance?\nFor example, you could use the following code to search for affordable fabric options and embroidery patterns:\n```ruby\nrequire 'etsy'\n# Search for affordable fabrics on Etsy\nresults = Etsy::Search.new('affordable fabric', :includes => [:Images], :price_max => 50).results\n# Search for intricate embroidery patterns on Etsy\nembroidery_results = Etsy::Search.new('intricate embroidery pattern', :includes => [:Images], :price_max => 100).results\n# Choose a fabric and embroidery pattern to use in the outfit\nchosen_fabric = results.sample\nchosen_embroidery = embroidery_results.sample\n# Use the chosen fabric and embroidery pattern to create a stylish outfit\n# ...\n```\nCan you provide additional code and reasoning to complete the solution? ",
151
+ "How can I use C# code to simulate the discovery of a rare and valuable book collection secretly housed in a local library, and then capture the town's reaction to the discovery? ",
152
+ ]
153
+ embeddings = model.encode(sentences)
154
+ print(embeddings.shape)
155
+ # [3, 384]
156
+
157
+ # Get the similarity scores for the embeddings
158
+ similarities = model.similarity(embeddings, embeddings)
159
+ print(similarities.shape)
160
+ # [3, 3]
161
+ ```
162
+
163
+ <!--
164
+ ### Direct Usage (Transformers)
165
+
166
+ <details><summary>Click to see the direct usage in Transformers</summary>
167
+
168
+ </details>
169
+ -->
170
+
171
+ <!--
172
+ ### Downstream Usage (Sentence Transformers)
173
+
174
+ You can finetune this model on your own dataset.
175
+
176
+ <details><summary>Click to expand</summary>
177
+
178
+ </details>
179
+ -->
180
+
181
+ <!--
182
+ ### Out-of-Scope Use
183
+
184
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
185
+ -->
186
+
187
+ <!--
188
+ ## Bias, Risks and Limitations
189
+
190
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
191
+ -->
192
+
193
+ <!--
194
+ ### Recommendations
195
+
196
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
197
+ -->
198
+
199
+ ## Training Details
200
+
201
+ ### Training Dataset
202
+
203
+ #### Unnamed Dataset
204
+
205
+
206
+ * Size: 1,500 training samples
207
+ * Columns: <code>sentence</code> and <code>label</code>
208
+ * Approximate statistics based on the first 1000 samples:
209
+ | | sentence | label |
210
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
211
+ | type | string | int |
212
+ | details | <ul><li>min: 8 tokens</li><li>mean: 95.61 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> |
213
+ * Samples:
214
+ | sentence | label |
215
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
216
+ | <code>请输出所有跟政企市场相关的关键词列表</code> | <code>0</code> |
217
+ | <code>开发一个定制的JavaScript解决方案,用于有效地平衡和排序一个二叉树。你可以假设输入是一个平衡因子擯至2的大O()为Log(N)的AVL树。专注于实现自我调整二叉搜索树的变换,当面对不平衡操作时,如插入或删除节点。确保你的解决方案为潜在的边缘案例做好准备,并具有健壮的错误处理策略。你的代码应该清晰地记录和优化效率。</code> | <code>0</code> |
218
+ | <code>在一个尚未被公开的领域中,描述五个最具创新性的产品概念。</code> | <code>0</code> |
219
+ * Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
220
+
221
+ ### Training Hyperparameters
222
+ #### Non-Default Hyperparameters
223
+
224
+ - `per_device_train_batch_size`: 16
225
+ - `per_device_eval_batch_size`: 16
226
+ - `learning_rate`: 2e-05
227
+ - `num_train_epochs`: 2
228
+ - `warmup_ratio`: 0.1
229
+ - `bf16`: True
230
+ - `batch_sampler`: no_duplicates
231
+
232
+ #### All Hyperparameters
233
+ <details><summary>Click to expand</summary>
234
+
235
+ - `overwrite_output_dir`: False
236
+ - `do_predict`: False
237
+ - `eval_strategy`: no
238
+ - `prediction_loss_only`: True
239
+ - `per_device_train_batch_size`: 16
240
+ - `per_device_eval_batch_size`: 16
241
+ - `per_gpu_train_batch_size`: None
242
+ - `per_gpu_eval_batch_size`: None
243
+ - `gradient_accumulation_steps`: 1
244
+ - `eval_accumulation_steps`: None
245
+ - `learning_rate`: 2e-05
246
+ - `weight_decay`: 0.0
247
+ - `adam_beta1`: 0.9
248
+ - `adam_beta2`: 0.999
249
+ - `adam_epsilon`: 1e-08
250
+ - `max_grad_norm`: 1.0
251
+ - `num_train_epochs`: 2
252
+ - `max_steps`: -1
253
+ - `lr_scheduler_type`: linear
254
+ - `lr_scheduler_kwargs`: {}
255
+ - `warmup_ratio`: 0.1
256
+ - `warmup_steps`: 0
257
+ - `log_level`: passive
258
+ - `log_level_replica`: warning
259
+ - `log_on_each_node`: True
260
+ - `logging_nan_inf_filter`: True
261
+ - `save_safetensors`: True
262
+ - `save_on_each_node`: False
263
+ - `save_only_model`: False
264
+ - `restore_callback_states_from_checkpoint`: False
265
+ - `no_cuda`: False
266
+ - `use_cpu`: False
267
+ - `use_mps_device`: False
268
+ - `seed`: 42
269
+ - `data_seed`: None
270
+ - `jit_mode_eval`: False
271
+ - `use_ipex`: False
272
+ - `bf16`: True
273
+ - `fp16`: False
274
+ - `fp16_opt_level`: O1
275
+ - `half_precision_backend`: auto
276
+ - `bf16_full_eval`: False
277
+ - `fp16_full_eval`: False
278
+ - `tf32`: None
279
+ - `local_rank`: 0
280
+ - `ddp_backend`: None
281
+ - `tpu_num_cores`: None
282
+ - `tpu_metrics_debug`: False
283
+ - `debug`: []
284
+ - `dataloader_drop_last`: False
285
+ - `dataloader_num_workers`: 0
286
+ - `dataloader_prefetch_factor`: None
287
+ - `past_index`: -1
288
+ - `disable_tqdm`: False
289
+ - `remove_unused_columns`: True
290
+ - `label_names`: None
291
+ - `load_best_model_at_end`: False
292
+ - `ignore_data_skip`: False
293
+ - `fsdp`: []
294
+ - `fsdp_min_num_params`: 0
295
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
296
+ - `fsdp_transformer_layer_cls_to_wrap`: None
297
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
298
+ - `deepspeed`: None
299
+ - `label_smoothing_factor`: 0.0
300
+ - `optim`: adamw_torch
301
+ - `optim_args`: None
302
+ - `adafactor`: False
303
+ - `group_by_length`: False
304
+ - `length_column_name`: length
305
+ - `ddp_find_unused_parameters`: None
306
+ - `ddp_bucket_cap_mb`: None
307
+ - `ddp_broadcast_buffers`: False
308
+ - `dataloader_pin_memory`: True
309
+ - `dataloader_persistent_workers`: False
310
+ - `skip_memory_metrics`: True
311
+ - `use_legacy_prediction_loop`: False
312
+ - `push_to_hub`: False
313
+ - `resume_from_checkpoint`: None
314
+ - `hub_model_id`: None
315
+ - `hub_strategy`: every_save
316
+ - `hub_private_repo`: False
317
+ - `hub_always_push`: False
318
+ - `gradient_checkpointing`: False
319
+ - `gradient_checkpointing_kwargs`: None
320
+ - `include_inputs_for_metrics`: False
321
+ - `eval_do_concat_batches`: True
322
+ - `fp16_backend`: auto
323
+ - `push_to_hub_model_id`: None
324
+ - `push_to_hub_organization`: None
325
+ - `mp_parameters`:
326
+ - `auto_find_batch_size`: False
327
+ - `full_determinism`: False
328
+ - `torchdynamo`: None
329
+ - `ray_scope`: last
330
+ - `ddp_timeout`: 1800
331
+ - `torch_compile`: False
332
+ - `torch_compile_backend`: None
333
+ - `torch_compile_mode`: None
334
+ - `dispatch_batches`: None
335
+ - `split_batches`: None
336
+ - `include_tokens_per_second`: False
337
+ - `include_num_input_tokens_seen`: False
338
+ - `neftune_noise_alpha`: None
339
+ - `optim_target_modules`: None
340
+ - `batch_eval_metrics`: False
341
+ - `eval_on_start`: False
342
+ - `batch_sampler`: no_duplicates
343
+ - `multi_dataset_batch_sampler`: proportional
344
+
345
+ </details>
346
+
347
+ ### Training Logs
348
+ | Epoch | Step | Training Loss |
349
+ |:------:|:----:|:-------------:|
350
+ | 1.0638 | 100 | 0.097 |
351
+
352
+
353
+ ### Framework Versions
354
+ - Python: 3.10.12
355
+ - Sentence Transformers: 3.0.1
356
+ - Transformers: 4.42.4
357
+ - PyTorch: 2.3.1+cu121
358
+ - Accelerate: 0.33.0.dev0
359
+ - Datasets: 2.20.0
360
+ - Tokenizers: 0.19.1
361
+
362
+ ## Citation
363
+
364
+ ### BibTeX
365
+
366
+ #### Sentence Transformers
367
+ ```bibtex
368
+ @inproceedings{reimers-2019-sentence-bert,
369
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
370
+ author = "Reimers, Nils and Gurevych, Iryna",
371
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
372
+ month = "11",
373
+ year = "2019",
374
+ publisher = "Association for Computational Linguistics",
375
+ url = "https://arxiv.org/abs/1908.10084",
376
+ }
377
+ ```
378
+
379
+ #### BatchAllTripletLoss
380
+ ```bibtex
381
+ @misc{hermans2017defense,
382
+ title={In Defense of the Triplet Loss for Person Re-Identification},
383
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
384
+ year={2017},
385
+ eprint={1703.07737},
386
+ archivePrefix={arXiv},
387
+ primaryClass={cs.CV}
388
+ }
389
+ ```
390
+
391
+ <!--
392
+ ## Glossary
393
+
394
+ *Clearly define terms in order to be accessible across audiences.*
395
+ -->
396
+
397
+ <!--
398
+ ## Model Card Authors
399
+
400
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
401
+ -->
402
+
403
+ <!--
404
+ ## Model Card Contact
405
+
406
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
407
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.42.4",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a85d3d1be576018deb068d81138299861c2ffc9ed66cfbd9c90f898973815acb
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff