Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +19 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 149.49 +/- 85.41
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
---
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f577127dc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f577127dcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f577127dd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f577127ddd0>", "_build": "<function ActorCriticPolicy._build at 0x7f577127de60>", "forward": "<function ActorCriticPolicy.forward at 0x7f577127def0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f577127df80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5771287050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57712870e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5771287170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5771287200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f57712cd9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652029709.8195233, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1AqrzsWbS5MuE8Ow+eCjkE4QQ8jsVkugAAgD8AAIA/wE+JPa7pgbo6ZjG7F/uXtq+jwDp2P0w6AACAPwAAAADjk2K+4b2xvPgutzozGwY5x2AoPnXu07kAAIA/AACAP/b3c74F9uQ8ou4WPJvzdLqIeni+qsVoOwAAgD8AAIA/EJVwvlZQAT1uZwA6mZPquHQpkb6slEq5AACAPwAAgD/N5YA84XSsuihi1DxOHlU2AKU2uk33SDUAAIA/AACAP+bns71fPTU/4PecvcmQqL4ogz29kO5XPQAAAAAAAAAATWKTPvKhpz8CROY+CRDHvtvMcj7GUIQ9AAAAAAAAAAAawN0+w6FrP+KMYz4Ab+a+qgHEPaCXnbwAAAAAAAAAADO1XrwGtnU/Lb7PvZ/M275uNkq9Pi2ivQAAAAAAAAAAjVaHvtpiSr3Wi8w6g+CuOa5vrz5CJBC6AACAPwAAgD8zmS08j+Ibuis3CrlpCR02lqUku4ICHzgAAIA/AACAP5ryOT7xRjA8tdPxu8HdBLq/FLg9tijCugAAgD8AAIA/szxmva7Tqbotjhi7cPHZOwivnzvpVq+8AACAPwAAgD/z0tU99Sg/PopaEL4j7qa+TESNvM28170AAAAAAAAAAJq+Lz5xOTe7R24zvDrvJDmtuWO8xz4POgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvyhBfyE/YkCUhpRSlIwBbJRN6AOMAXSUR0CB38938n/ldX2UKGgGaAloD0MIfEW3XtOFZUCUhpRSlGgVTegDaBZHQIHjLROUMXt1fZQoaAZoCWgPQwhskh/xKwo8QJSGlFKUaBVL6mgWR0CCK9nKW9lFdX2UKGgGaAloD0MI0lW6u84sWUCUhpRSlGgVTegDaBZHQII0RbKRuCR1fZQoaAZoCWgPQwg/U69bBBxdQJSGlFKUaBVN6ANoFkdAgjpPddmg8XV9lChoBmgJaA9DCH12wHXF/DPAlIaUUpRoFU0HAWgWR0CCO+Rg7YChdX2UKGgGaAloD0MI2LrUCP2wXUCUhpRSlGgVTegDaBZHQIJGgXj2i+N1fZQoaAZoCWgPQwjtSstIPWBjQJSGlFKUaBVN6ANoFkdAgllfwiJO33V9lChoBmgJaA9DCLKEtTF21lxAlIaUUpRoFU3oA2gWR0CCY/1jiGWVdX2UKGgGaAloD0MIVfmekQitDECUhpRSlGgVS/5oFkdAgmQIJzDGcXV9lChoBmgJaA9DCOCGGK95QFtAlIaUUpRoFU3oA2gWR0CCeVeWOZLJdX2UKGgGaAloD0MIRiI0go23NECUhpRSlGgVTTsBaBZHQIJ7AdwNsnB1fZQoaAZoCWgPQwiP+usVFgA3QJSGlFKUaBVL/GgWR0CCjpEAo5PudX2UKGgGaAloD0MIDOpb5vSmYECUhpRSlGgVTegDaBZHQIKdJ06o2n91fZQoaAZoCWgPQwhuT5DY7po5wJSGlFKUaBVL9WgWR0CCpc8h9srNdX2UKGgGaAloD0MIK4arA6ARY0CUhpRSlGgVTegDaBZHQIKpWF10T111fZQoaAZoCWgPQwh5Vz1gnj1iQJSGlFKUaBVN6ANoFkdAgqtdoN/e+HV9lChoBmgJaA9DCDbptkQupWBAlIaUUpRoFU3oA2gWR0CCrIO5J9RadX2UKGgGaAloD0MIVOBkG7g0WkCUhpRSlGgVTegDaBZHQIKtQwCbMHN1fZQoaAZoCWgPQwgofoy5azdnQJSGlFKUaBVN6ANoFkdAgq87P6be/HV9lChoBmgJaA9DCO8eoPvyAWRAlIaUUpRoFU3oA2gWR0CCucKG+K0ldX2UKGgGaAloD0MIsJKP3QV0XkCUhpRSlGgVTegDaBZHQIK9O74BV+91fZQoaAZoCWgPQwjrNqj91ghHQJSGlFKUaBVL32gWR0CCy7fv4M4MdX2UKGgGaAloD0MIaqZ7ndRXHECUhpRSlGgVS/BoFkdAgwQ70WdmQXV9lChoBmgJaA9DCHBh3Xh3VldAlIaUUpRoFU3oA2gWR0CDBcODJ2dNdX2UKGgGaAloD0MIaY1BJ4QFVkCUhpRSlGgVTegDaBZHQIMMsI7eVLV1fZQoaAZoCWgPQwjy0k1iEDxVQJSGlFKUaBVN6ANoFkdAgxNGSQo1DXV9lChoBmgJaA9DCK946pEGm1xAlIaUUpRoFU3oA2gWR0CDLwvalDWtdX2UKGgGaAloD0MIFW9kHnlYY0CUhpRSlGgVTegDaBZHQIM5FHlOoHd1fZQoaAZoCWgPQwgaU7DG2QxZQJSGlFKUaBVN6ANoFkdAg1G27FsHjnV9lChoBmgJaA9DCKRxqN+FpSxAlIaUUpRoFUvbaBZHQINUmGO+7Dl1fZQoaAZoCWgPQwgBGM+goT/2P5SGlFKUaBVL/GgWR0CDZQXw9aEBdX2UKGgGaAloD0MIBaipZWuMXkCUhpRSlGgVTegDaBZHQINlEsQNCqp1fZQoaAZoCWgPQwgLJCh+DOlhQJSGlFKUaBVN6ANoFkdAg3I6rmyPdXV9lChoBmgJaA9DCEsEqn8Q8WJAlIaUUpRoFU3oA2gWR0CDea8JUo8ZdX2UKGgGaAloD0MICd0lcdZBY0CUhpRSlGgVTegDaBZHQIN8sEFGG211fZQoaAZoCWgPQwj8/WK2ZLpdQJSGlFKUaBVN6ANoFkdAg4BXyqdYn3V9lChoBmgJaA9DCAwfEVMiXWJAlIaUUpRoFU3oA2gWR0CDgkur6tT2dX2UKGgGaAloD0MIfGEyVTCGZECUhpRSlGgVTegDaBZHQIOM/+n62v11fZQoaAZoCWgPQwhPlIRE2ixEwJSGlFKUaBVNEQFoFkdAg4/kPUaybHV9lChoBmgJaA9DCDuL3qmAmFZAlIaUUpRoFU3oA2gWR0CDkLnuAqd6dX2UKGgGaAloD0MIlUT2QZY3XkCUhpRSlGgVTegDaBZHQIOfwOnVG1B1fZQoaAZoCWgPQwjdXPxtTww2QJSGlFKUaBVNCAFoFkdAg6BYSYgJTnV9lChoBmgJaA9DCObmG9E969M/lIaUUpRoFUv2aBZHQIOggrhBJI11fZQoaAZoCWgPQwjkFB3J5cJWQJSGlFKUaBVN6ANoFkdAg6Emn4wh4nV9lChoBmgJaA9DCOwTQDEyE2BAlIaUUpRoFU3oA2gWR0CDooeJ53TvdX2UKGgGaAloD0MI6/6xEB1JYUCUhpRSlGgVTegDaBZHQIPfL2g39751fZQoaAZoCWgPQwjyXN+Hg+QlQJSGlFKUaBVNIAFoFkdAg+B5x7zClHV9lChoBmgJaA9DCFFKCFbVgyDAlIaUUpRoFUvvaBZHQIPjQjps41h1fZQoaAZoCWgPQwj+Cpkrgz1eQJSGlFKUaBVN6ANoFkdAg+RtozvZy3V9lChoBmgJaA9DCBJsXP+uJy5AlIaUUpRoFUvzaBZHQIPmO2CuloF1fZQoaAZoCWgPQwh2VDVB1GU4QJSGlFKUaBVLyGgWR0CD7NHDJlredX2UKGgGaAloD0MIJLiRskXIQkCUhpRSlGgVTRgBaBZHQIQALJU5uIh1fZQoaAZoCWgPQwjTM73EWDJkQJSGlFKUaBVN6ANoFkdAhBoB2OhkAnV9lChoBmgJaA9DCJ9afXXV92JAlIaUUpRoFU3oA2gWR0CEHOxoIv8JdX2UKGgGaAloD0MI0csoltt/ZECUhpRSlGgVTegDaBZHQIQtrxd6cAl1fZQoaAZoCWgPQwhDAdvBiPVYQJSGlFKUaBVN6ANoFkdAhDtEUTL4e3V9lChoBmgJaA9DCNibGJKTSlpAlIaUUpRoFU3oA2gWR0CESwxUvPC3dX2UKGgGaAloD0MI8uocAzIwZUCUhpRSlGgVTcECaBZHQIRMTvXsgMd1fZQoaAZoCWgPQwjUDRR4J2hcQJSGlFKUaBVN6ANoFkdAhF2rGJemenV9lChoBmgJaA9DCA4WTtL8GWBAlIaUUpRoFU3oA2gWR0CEccN70Fr3dX2UKGgGaAloD0MI7X+AtWrhZUCUhpRSlGgVTegDaBZHQIRywTGo73h1fZQoaAZoCWgPQwjdtu9R/zxiQJSGlFKUaBVN6ANoFkdAhHOrgn+hoXV9lChoBmgJaA9DCKm/XmHBpl5AlIaUUpRoFU3oA2gWR0CEdXmSyMUAdX2UKGgGaAloD0MIpU3VPbICX0CUhpRSlGgVTegDaBZHQIS5rz06HTJ1fZQoaAZoCWgPQwi/1M+bij9dQJSGlFKUaBVN6ANoFkdAhLuDXOGCZnV9lChoBmgJaA9DCA7aq48HUGJAlIaUUpRoFU3oA2gWR0CEvj0aIeo2dX2UKGgGaAloD0MIRmEXRQ8RXkCUhpRSlGgVTegDaBZHQITHt/FzdUN1fZQoaAZoCWgPQwhtV+iDZVREQJSGlFKUaBVLwWgWR0CEyRTuv2XcdX2UKGgGaAloD0MI6kFBKVq0WkCUhpRSlGgVTegDaBZHQITfd2NedCp1fZQoaAZoCWgPQwhrZcIvdeVgQJSGlFKUaBVN6ANoFkdAhPsfZElVtHV9lChoBmgJaA9DCD52Fygpi11AlIaUUpRoFU3oA2gWR0CE/mQEpy6udX2UKGgGaAloD0MIj+TyH9KyWECUhpRSlGgVTegDaBZHQIUQ2VC5Vfh1fZQoaAZoCWgPQwjbi2g7ptVgQJSGlFKUaBVN6ANoFkdAhSAfDUExI3V9lChoBmgJaA9DCBiZgF8jJFdAlIaUUpRoFU3oA2gWR0CFMTKCg9NfdX2UKGgGaAloD0MIbOun/6ynXUCUhpRSlGgVTegDaBZHQIUyf7zkIX11fZQoaAZoCWgPQwj8NsR4TcRiQJSGlFKUaBVN6ANoFkdAhUTZnL7oCHV9lChoBmgJaA9DCDvCacGLG15AlIaUUpRoFU3oA2gWR0CFWZ0voNd7dX2UKGgGaAloD0MIQUXVr3RCW0CUhpRSlGgVTegDaBZHQIVakV+I/JN1fZQoaAZoCWgPQwhxk1FlGFBmQJSGlFKUaBVN6ANoFkdAhVuCC8OCoXV9lChoBmgJaA9DCOmAJOzbQ19AlIaUUpRoFU3oA2gWR0CFotQhwEQodX2UKGgGaAloD0MICOQSRx4VWkCUhpRSlGgVTegDaBZHQIWkiup0fYB1fZQoaAZoCWgPQwgJFRxeEI5bQJSGlFKUaBVN6ANoFkdAhacguqWC3HV9lChoBmgJaA9DCMcuUb010WBAlIaUUpRoFU3oA2gWR0CFsJKhcqvvdX2UKGgGaAloD0MITtNnB1xGYECUhpRSlGgVTegDaBZHQIWyFWsA/9p1fZQoaAZoCWgPQwiVfsLZrc07QJSGlFKUaBVL7mgWR0CFxbnezlcRdX2UKGgGaAloD0MI8kOlETOQYUCUhpRSlGgVTegDaBZHQIXGkiliz9l1fZQoaAZoCWgPQwhjJlEv+F9cQJSGlFKUaBVN6ANoFkdAheAZaNdZ73V9lChoBmgJaA9DCK5jXHFxUF5AlIaUUpRoFU3oA2gWR0CF4xjvuw5edX2UKGgGaAloD0MI1y/YDdsaUkCUhpRSlGgVTegDaBZHQIXzctdzGPx1fZQoaAZoCWgPQwgXZTbIpB9iQJSGlFKUaBVN6ANoFkdAhgEDNQj2SXV9lChoBmgJaA9DCMzSTs3lNjZAlIaUUpRoFUvMaBZHQIYDbGHYYix1fZQoaAZoCWgPQwjLnZlgOBBgQJSGlFKUaBVN6ANoFkdAhg/s0P6KtXV9lChoBmgJaA9DCNB+pIgMAl9AlIaUUpRoFU3oA2gWR0CGEQoBJZntdX2UKGgGaAloD0MIjEl/L4U6aECUhpRSlGgVTTcBaBZHQIYYGGRFI/Z1fZQoaAZoCWgPQwirdk1I62FhQJSGlFKUaBVN6ANoFkdAhiFOObRWtHV9lChoBmgJaA9DCNHN/kC5CFZAlIaUUpRoFU3oA2gWR0CGM45QP7N0dX2UKGgGaAloD0MIoMA7+XTtYECUhpRSlGgVTegDaBZHQIY0cJlar3l1fZQoaAZoCWgPQwjY8V8gCJA+QJSGlFKUaBVN6ANoFkdAhjVMgMc6vXV9lChoBmgJaA9DCIuIYvIGECVAlIaUUpRoFUvUaBZHQIY6mSjgydp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e1694b177dbb9781a637f21b601cb657feb2cad51fc8688e8d83beeb0a5a80c
|
3 |
+
size 144028
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f577127dc20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f577127dcb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f577127dd40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f577127ddd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f577127de60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f577127def0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f577127df80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5771287050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57712870e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5771287170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5771287200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f57712cd9c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652029709.8195233,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1AqrzsWbS5MuE8Ow+eCjkE4QQ8jsVkugAAgD8AAIA/wE+JPa7pgbo6ZjG7F/uXtq+jwDp2P0w6AACAPwAAAADjk2K+4b2xvPgutzozGwY5x2AoPnXu07kAAIA/AACAP/b3c74F9uQ8ou4WPJvzdLqIeni+qsVoOwAAgD8AAIA/EJVwvlZQAT1uZwA6mZPquHQpkb6slEq5AACAPwAAgD/N5YA84XSsuihi1DxOHlU2AKU2uk33SDUAAIA/AACAP+bns71fPTU/4PecvcmQqL4ogz29kO5XPQAAAAAAAAAATWKTPvKhpz8CROY+CRDHvtvMcj7GUIQ9AAAAAAAAAAAawN0+w6FrP+KMYz4Ab+a+qgHEPaCXnbwAAAAAAAAAADO1XrwGtnU/Lb7PvZ/M275uNkq9Pi2ivQAAAAAAAAAAjVaHvtpiSr3Wi8w6g+CuOa5vrz5CJBC6AACAPwAAgD8zmS08j+Ibuis3CrlpCR02lqUku4ICHzgAAIA/AACAP5ryOT7xRjA8tdPxu8HdBLq/FLg9tijCugAAgD8AAIA/szxmva7Tqbotjhi7cPHZOwivnzvpVq+8AACAPwAAgD/z0tU99Sg/PopaEL4j7qa+TESNvM28170AAAAAAAAAAJq+Lz5xOTe7R24zvDrvJDmtuWO8xz4POgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvyhBfyE/YkCUhpRSlIwBbJRN6AOMAXSUR0CB38938n/ldX2UKGgGaAloD0MIfEW3XtOFZUCUhpRSlGgVTegDaBZHQIHjLROUMXt1fZQoaAZoCWgPQwhskh/xKwo8QJSGlFKUaBVL6mgWR0CCK9nKW9lFdX2UKGgGaAloD0MI0lW6u84sWUCUhpRSlGgVTegDaBZHQII0RbKRuCR1fZQoaAZoCWgPQwg/U69bBBxdQJSGlFKUaBVN6ANoFkdAgjpPddmg8XV9lChoBmgJaA9DCH12wHXF/DPAlIaUUpRoFU0HAWgWR0CCO+Rg7YChdX2UKGgGaAloD0MI2LrUCP2wXUCUhpRSlGgVTegDaBZHQIJGgXj2i+N1fZQoaAZoCWgPQwjtSstIPWBjQJSGlFKUaBVN6ANoFkdAgllfwiJO33V9lChoBmgJaA9DCLKEtTF21lxAlIaUUpRoFU3oA2gWR0CCY/1jiGWVdX2UKGgGaAloD0MIVfmekQitDECUhpRSlGgVS/5oFkdAgmQIJzDGcXV9lChoBmgJaA9DCOCGGK95QFtAlIaUUpRoFU3oA2gWR0CCeVeWOZLJdX2UKGgGaAloD0MIRiI0go23NECUhpRSlGgVTTsBaBZHQIJ7AdwNsnB1fZQoaAZoCWgPQwiP+usVFgA3QJSGlFKUaBVL/GgWR0CCjpEAo5PudX2UKGgGaAloD0MIDOpb5vSmYECUhpRSlGgVTegDaBZHQIKdJ06o2n91fZQoaAZoCWgPQwhuT5DY7po5wJSGlFKUaBVL9WgWR0CCpc8h9srNdX2UKGgGaAloD0MIK4arA6ARY0CUhpRSlGgVTegDaBZHQIKpWF10T111fZQoaAZoCWgPQwh5Vz1gnj1iQJSGlFKUaBVN6ANoFkdAgqtdoN/e+HV9lChoBmgJaA9DCDbptkQupWBAlIaUUpRoFU3oA2gWR0CCrIO5J9RadX2UKGgGaAloD0MIVOBkG7g0WkCUhpRSlGgVTegDaBZHQIKtQwCbMHN1fZQoaAZoCWgPQwgofoy5azdnQJSGlFKUaBVN6ANoFkdAgq87P6be/HV9lChoBmgJaA9DCO8eoPvyAWRAlIaUUpRoFU3oA2gWR0CCucKG+K0ldX2UKGgGaAloD0MIsJKP3QV0XkCUhpRSlGgVTegDaBZHQIK9O74BV+91fZQoaAZoCWgPQwjrNqj91ghHQJSGlFKUaBVL32gWR0CCy7fv4M4MdX2UKGgGaAloD0MIaqZ7ndRXHECUhpRSlGgVS/BoFkdAgwQ70WdmQXV9lChoBmgJaA9DCHBh3Xh3VldAlIaUUpRoFU3oA2gWR0CDBcODJ2dNdX2UKGgGaAloD0MIaY1BJ4QFVkCUhpRSlGgVTegDaBZHQIMMsI7eVLV1fZQoaAZoCWgPQwjy0k1iEDxVQJSGlFKUaBVN6ANoFkdAgxNGSQo1DXV9lChoBmgJaA9DCK946pEGm1xAlIaUUpRoFU3oA2gWR0CDLwvalDWtdX2UKGgGaAloD0MIFW9kHnlYY0CUhpRSlGgVTegDaBZHQIM5FHlOoHd1fZQoaAZoCWgPQwgaU7DG2QxZQJSGlFKUaBVN6ANoFkdAg1G27FsHjnV9lChoBmgJaA9DCKRxqN+FpSxAlIaUUpRoFUvbaBZHQINUmGO+7Dl1fZQoaAZoCWgPQwgBGM+goT/2P5SGlFKUaBVL/GgWR0CDZQXw9aEBdX2UKGgGaAloD0MIBaipZWuMXkCUhpRSlGgVTegDaBZHQINlEsQNCqp1fZQoaAZoCWgPQwgLJCh+DOlhQJSGlFKUaBVN6ANoFkdAg3I6rmyPdXV9lChoBmgJaA9DCEsEqn8Q8WJAlIaUUpRoFU3oA2gWR0CDea8JUo8ZdX2UKGgGaAloD0MICd0lcdZBY0CUhpRSlGgVTegDaBZHQIN8sEFGG211fZQoaAZoCWgPQwj8/WK2ZLpdQJSGlFKUaBVN6ANoFkdAg4BXyqdYn3V9lChoBmgJaA9DCAwfEVMiXWJAlIaUUpRoFU3oA2gWR0CDgkur6tT2dX2UKGgGaAloD0MIfGEyVTCGZECUhpRSlGgVTegDaBZHQIOM/+n62v11fZQoaAZoCWgPQwhPlIRE2ixEwJSGlFKUaBVNEQFoFkdAg4/kPUaybHV9lChoBmgJaA9DCDuL3qmAmFZAlIaUUpRoFU3oA2gWR0CDkLnuAqd6dX2UKGgGaAloD0MIlUT2QZY3XkCUhpRSlGgVTegDaBZHQIOfwOnVG1B1fZQoaAZoCWgPQwjdXPxtTww2QJSGlFKUaBVNCAFoFkdAg6BYSYgJTnV9lChoBmgJaA9DCObmG9E969M/lIaUUpRoFUv2aBZHQIOggrhBJI11fZQoaAZoCWgPQwjkFB3J5cJWQJSGlFKUaBVN6ANoFkdAg6Emn4wh4nV9lChoBmgJaA9DCOwTQDEyE2BAlIaUUpRoFU3oA2gWR0CDooeJ53TvdX2UKGgGaAloD0MI6/6xEB1JYUCUhpRSlGgVTegDaBZHQIPfL2g39751fZQoaAZoCWgPQwjyXN+Hg+QlQJSGlFKUaBVNIAFoFkdAg+B5x7zClHV9lChoBmgJaA9DCFFKCFbVgyDAlIaUUpRoFUvvaBZHQIPjQjps41h1fZQoaAZoCWgPQwj+Cpkrgz1eQJSGlFKUaBVN6ANoFkdAg+RtozvZy3V9lChoBmgJaA9DCBJsXP+uJy5AlIaUUpRoFUvzaBZHQIPmO2CuloF1fZQoaAZoCWgPQwh2VDVB1GU4QJSGlFKUaBVLyGgWR0CD7NHDJlredX2UKGgGaAloD0MIJLiRskXIQkCUhpRSlGgVTRgBaBZHQIQALJU5uIh1fZQoaAZoCWgPQwjTM73EWDJkQJSGlFKUaBVN6ANoFkdAhBoB2OhkAnV9lChoBmgJaA9DCJ9afXXV92JAlIaUUpRoFU3oA2gWR0CEHOxoIv8JdX2UKGgGaAloD0MI0csoltt/ZECUhpRSlGgVTegDaBZHQIQtrxd6cAl1fZQoaAZoCWgPQwhDAdvBiPVYQJSGlFKUaBVN6ANoFkdAhDtEUTL4e3V9lChoBmgJaA9DCNibGJKTSlpAlIaUUpRoFU3oA2gWR0CESwxUvPC3dX2UKGgGaAloD0MI8uocAzIwZUCUhpRSlGgVTcECaBZHQIRMTvXsgMd1fZQoaAZoCWgPQwjUDRR4J2hcQJSGlFKUaBVN6ANoFkdAhF2rGJemenV9lChoBmgJaA9DCA4WTtL8GWBAlIaUUpRoFU3oA2gWR0CEccN70Fr3dX2UKGgGaAloD0MI7X+AtWrhZUCUhpRSlGgVTegDaBZHQIRywTGo73h1fZQoaAZoCWgPQwjdtu9R/zxiQJSGlFKUaBVN6ANoFkdAhHOrgn+hoXV9lChoBmgJaA9DCKm/XmHBpl5AlIaUUpRoFU3oA2gWR0CEdXmSyMUAdX2UKGgGaAloD0MIpU3VPbICX0CUhpRSlGgVTegDaBZHQIS5rz06HTJ1fZQoaAZoCWgPQwi/1M+bij9dQJSGlFKUaBVN6ANoFkdAhLuDXOGCZnV9lChoBmgJaA9DCA7aq48HUGJAlIaUUpRoFU3oA2gWR0CEvj0aIeo2dX2UKGgGaAloD0MIRmEXRQ8RXkCUhpRSlGgVTegDaBZHQITHt/FzdUN1fZQoaAZoCWgPQwhtV+iDZVREQJSGlFKUaBVLwWgWR0CEyRTuv2XcdX2UKGgGaAloD0MI6kFBKVq0WkCUhpRSlGgVTegDaBZHQITfd2NedCp1fZQoaAZoCWgPQwhrZcIvdeVgQJSGlFKUaBVN6ANoFkdAhPsfZElVtHV9lChoBmgJaA9DCD52Fygpi11AlIaUUpRoFU3oA2gWR0CE/mQEpy6udX2UKGgGaAloD0MIj+TyH9KyWECUhpRSlGgVTegDaBZHQIUQ2VC5Vfh1fZQoaAZoCWgPQwjbi2g7ptVgQJSGlFKUaBVN6ANoFkdAhSAfDUExI3V9lChoBmgJaA9DCBiZgF8jJFdAlIaUUpRoFU3oA2gWR0CFMTKCg9NfdX2UKGgGaAloD0MIbOun/6ynXUCUhpRSlGgVTegDaBZHQIUyf7zkIX11fZQoaAZoCWgPQwj8NsR4TcRiQJSGlFKUaBVN6ANoFkdAhUTZnL7oCHV9lChoBmgJaA9DCDvCacGLG15AlIaUUpRoFU3oA2gWR0CFWZ0voNd7dX2UKGgGaAloD0MIQUXVr3RCW0CUhpRSlGgVTegDaBZHQIVakV+I/JN1fZQoaAZoCWgPQwhxk1FlGFBmQJSGlFKUaBVN6ANoFkdAhVuCC8OCoXV9lChoBmgJaA9DCOmAJOzbQ19AlIaUUpRoFU3oA2gWR0CFotQhwEQodX2UKGgGaAloD0MICOQSRx4VWkCUhpRSlGgVTegDaBZHQIWkiup0fYB1fZQoaAZoCWgPQwgJFRxeEI5bQJSGlFKUaBVN6ANoFkdAhacguqWC3HV9lChoBmgJaA9DCMcuUb010WBAlIaUUpRoFU3oA2gWR0CFsJKhcqvvdX2UKGgGaAloD0MITtNnB1xGYECUhpRSlGgVTegDaBZHQIWyFWsA/9p1fZQoaAZoCWgPQwiVfsLZrc07QJSGlFKUaBVL7mgWR0CFxbnezlcRdX2UKGgGaAloD0MI8kOlETOQYUCUhpRSlGgVTegDaBZHQIXGkiliz9l1fZQoaAZoCWgPQwhjJlEv+F9cQJSGlFKUaBVN6ANoFkdAheAZaNdZ73V9lChoBmgJaA9DCK5jXHFxUF5AlIaUUpRoFU3oA2gWR0CF4xjvuw5edX2UKGgGaAloD0MI1y/YDdsaUkCUhpRSlGgVTegDaBZHQIXzctdzGPx1fZQoaAZoCWgPQwgXZTbIpB9iQJSGlFKUaBVN6ANoFkdAhgEDNQj2SXV9lChoBmgJaA9DCMzSTs3lNjZAlIaUUpRoFUvMaBZHQIYDbGHYYix1fZQoaAZoCWgPQwjLnZlgOBBgQJSGlFKUaBVN6ANoFkdAhg/s0P6KtXV9lChoBmgJaA9DCNB+pIgMAl9AlIaUUpRoFU3oA2gWR0CGEQoBJZntdX2UKGgGaAloD0MIjEl/L4U6aECUhpRSlGgVTTcBaBZHQIYYGGRFI/Z1fZQoaAZoCWgPQwirdk1I62FhQJSGlFKUaBVN6ANoFkdAhiFOObRWtHV9lChoBmgJaA9DCNHN/kC5CFZAlIaUUpRoFU3oA2gWR0CGM45QP7N0dX2UKGgGaAloD0MIoMA7+XTtYECUhpRSlGgVTegDaBZHQIY0cJlar3l1fZQoaAZoCWgPQwjY8V8gCJA+QJSGlFKUaBVN6ANoFkdAhjVMgMc6vXV9lChoBmgJaA9DCIuIYvIGECVAlIaUUpRoFUvUaBZHQIY6mSjgydp1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce89aa5d51a7e18285a1974a954fa5a71db87c25bd7095ae6f71f9fd54ca43b
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88e5153efc2c514a5e54ee81f81697e891d0b63171281e38ca6a9fb343c8a8ec
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2749e391b43cdfa3312d9f3b842b7d816086d181eac0dc82d4687b1273bc42
|
3 |
+
size 236119
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 149.4914094540041, "std_reward": 85.40966665968448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T17:48:17.022365"}
|