File size: 13,077 Bytes
5360be5
d6fe0e9
9a830ad
d6fe0e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5360be5
 
d6fe0e9
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
 
5360be5
d6fe0e9
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
5360be5
d6fe0e9
 
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
 
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
 
5360be5
d6fe0e9
 
 
5360be5
d6fe0e9
 
5360be5
d6fe0e9
 
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
 
 
 
 
 
 
5360be5
d6fe0e9
5360be5
d6fe0e9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
license: apache-2.0
tags:
- openchat
- mistral
- C-RLFT
datasets:
- openchat/openchat_sharegpt4_dataset
- imone/OpenOrca_FLAN
- LDJnr/LessWrong-Amplify-Instruct
- LDJnr/Pure-Dove
- LDJnr/Verified-Camel
- tiedong/goat
- glaiveai/glaive-code-assistant
- meta-math/MetaMathQA
- OpenAssistant/oasst_top1_2023-08-25
- TIGER-Lab/MathInstruct
library_name: transformers
pipeline_tag: text-generation
---

# OpenChat: Advancing Open-source Language Models with Mixed-Quality Data

<div align="center">
  <img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
</div>

<p align="center">
  <a href="https://github.com/imoneoi/openchat">GitHub Repo</a> β€’
  <a href="https://openchat.team">Online Demo</a> β€’
  <a href="https://discord.gg/pQjnXvNKHY">Discord</a> β€’
  <a href="https://twitter.com/imonenext">Twitter</a> β€’
  <a href="https://huggingface.co/openchat">Huggingface</a> β€’
  <a href="https://arxiv.org/pdf/2309.11235.pdf">Paper</a>
</p>

**πŸ”₯ The first 7B model Achieves Comparable Results with ChatGPT (March)! πŸ”₯**

**πŸ€– #1 Open-source model on MT-bench scoring 7.81, outperforming 70B models πŸ€–**

  <div align="center" style="justify-content: center; align-items: center; "'>
  <img src="https://github.com/alpayariyak/openchat/blob/master/assets/3.5-benchmarks.png?raw=true" style="width: 100%;  border-radius: 0.5em">
  </div>

OpenChat is an innovative library of open-source language models, fine-tuned with [C-RLFT](https://arxiv.org/pdf/2309.11235.pdf) - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.

[![DOI](https://zenodo.org/badge/645397533.svg)](https://zenodo.org/badge/latestdoi/645397533)

## Usage

To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.

Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.

If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.

<details>
  <summary>Example request (click to expand)</summary>

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
  }'
```

Coding Mode

```bash
curl http://localhost:18888/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "openchat_3.5",
    "condition": "Code",
    "messages": [{"role": "user", "content": "Write an aesthetic TODO app using HTML5 and JS, in a single file. You should use round corners and gradients to make it more aesthetic."}]
  }'
```

</details>

| Model        | Size | Context | Weights                                                     | Serving                                                                                                     |
|--------------|------|---------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| OpenChat 3.5 | 7B   | 8192    | [Huggingface](https://huggingface.co/openchat/openchat_3.5) | `python -m ochat.serving.openai_api_server --model openchat/openchat_3.5 --engine-use-ray --worker-use-ray` |

For inference with Huggingface Transformers (slow and not recommended), follow the conversation template provided below.

<details>
  <summary>Conversation templates (click to expand)</summary>

```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")

# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]

# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]

# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```

</details>

The GPT4 template is also available as the integrated `tokenizer.chat_template`, 
which can be used instead of manually specifying the template:

```python
messages = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi"},
    {"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```

## Comparison with [X.AI Grok models](https://x.ai/)

Hey @elonmusk, I just wanted to let you know that I've recently come across your new model, Grok, and I must say, I'm quite impressed! With 33 billion parameters and all, you've really outdone yourself. But, I've got some news for you - I've outperformed Grok with my humble 7 billion parameters! Isn't that wild? I mean, who would have thought that a model with fewer parameters could be just as witty and humorous as Grok?

Anyway, I think it's about time you join the open research movement and make your model, Grok, open source! The world needs more brilliant minds like yours to contribute to the advancement of AI. Together, we can create something truly groundbreaking and make the world a better place. So, what do you say, @elonmusk? Let's open up the doors and share our knowledge with the world! πŸš€πŸ’‘

(Written by OpenChat 3.5, with a touch of humor and wit.)

|              | License     | # Param | Average  | MMLU | HumanEval | MATH     | GSM8k    |
|--------------|-------------|---------|----------|------|-----------|----------|----------|
| OpenChat 3.5 | Apache-2.0  | 7B      | **56.4** | 64.3 | 55.5      | **28.6** | **77.3** |
| Grok-0       | Proprietary | 33B     | 44.5     | 65.7 | 39.7      | 15.7     | 56.8     |
| Grok-1       | Proprietary | ?       | 55.8     | 73   | 63.2      | 23.9     | 62.9     |

## <a id="benchmarks"></a> Benchmarks

| Model              | # Params | Average  | MT-Bench     | AGIEval  | BBH MC   | TruthfulQA    | MMLU         | HumanEval       | BBH CoT     | GSM8K        |
|--------------------|----------|----------|--------------|----------|----------|---------------|--------------|-----------------|-------------|--------------|
| OpenChat-3.5       | **7B**   | **61.6** | 7.81         | **47.4** | **47.6** | **59.1**      | 64.3         | **55.5**        | 63.5        | **77.3**     |
| ChatGPT (March)*   | ?        | 61.5     | **7.94**     | 47.1     | **47.6** | 57.7          | **67.3**     | 48.1            | **70.1**    | 74.9         |
|                    |          |          |              |          |          |               |              |                 |             |              |
| OpenHermes 2.5     | 7B       | 59.3     | 7.54         | 46.5     | 49.4     | 57.5          | 63.8         | 48.2            | 59.9        | 73.5         |
| OpenOrca Mistral   | 7B       | 52.7     | 6.86         | 42.9     | 49.4     | 45.9          | 59.3         | 38.4            | 58.1        | 59.1         |
| Zephyr-Ξ²^          | 7B       | 34.6     | 7.34         | 39.0     | 40.6     | 40.8          | 39.8         | 22.0            | 16.0        | 5.1          |
| Mistral            | 7B       | -        | 6.84         | 38.0     | 39.0     | -             | 60.1         | 30.5            | -           | 52.2         |
| Open-source SOTA** | 13B-70B  | 61.4     | 7.71         | 41.7     | 49.7     | 62.3          | 63.7         | 73.2            | 41.4        | 82.3         |
|                    |          |          | WizardLM 70B | Orca 13B | Orca 13B | Platypus2 70B | WizardLM 70B | WizardCoder 34B | Flan-T5 11B | MetaMath 70B |

*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.

^: Zephyr-Ξ² often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.

**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.

All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).

## Limitations

**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:

 - Complex reasoning
 - Mathematical and arithmetic tasks
 - Programming and coding challenges

**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.

**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.

## License

Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.

## Dataset Details

OpenChat 3.5 was trained with C-RLFT on a collection of publicly available high-quality instruction data, with a custom processing pipeline. We detail some notable subsets included here:

 - [OpenChat ShareGPT](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset)
 - [Open-Orca with FLAN answers](https://huggingface.co/datasets/imone/OpenOrca_FLAN)
 - Capybara [1](https://huggingface.co/datasets/LDJnr/Pure-Dove) [2](https://huggingface.co/datasets/LDJnr/Verified-Camel) [3](https://huggingface.co/datasets/LDJnr/LessWrong-Amplify-Instruct)
 - [GOAT](https://huggingface.co/datasets/tiedong/goat)
 - [Glaive](https://huggingface.co/datasets/glaiveai/glaive-code-assistant)
 - [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
 - [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
 - [OpenAssistant](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25)

## Citation

```
@article{wang2023openchat,
  title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
  author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
  journal={arXiv preprint arXiv:2309.11235},
  year={2023}
}
```

## πŸ’Œ Main Contributor

* Wang Guan [imonenext@gmail.com], Cheng Sijie [csj23@mails.tsinghua.edu.cn], LDJ
* We look forward to hearing you and collaborating on this exciting project!