updated readme.md
Browse files
README.md
CHANGED
@@ -1,30 +1,69 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
-
|
6 |
-
-
|
7 |
-
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
-
should probably proofread and complete it, then remove this comment. -->
|
12 |
-
|
13 |
# gpt2-medium-ne
|
14 |
|
15 |
-
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on
|
16 |
|
17 |
## Model description
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
## Intended uses & limitations
|
22 |
|
23 |
More information needed
|
24 |
|
25 |
## Training and evaluation data
|
26 |
|
27 |
-
|
28 |
|
29 |
## Training procedure
|
30 |
|
|
|
1 |
---
|
2 |
+
language: ne
|
3 |
license: mit
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
- gpt2
|
7 |
+
- ne
|
8 |
+
datasets: Oscar
|
9 |
+
widget:
|
10 |
+
- text: "गर्मि मौसममा चिसो खाने"
|
11 |
---
|
12 |
|
|
|
|
|
|
|
13 |
# gpt2-medium-ne
|
14 |
|
15 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on Oscar Dataset.
|
16 |
|
17 |
## Model description
|
18 |
|
19 |
+
This model is trained on Oscar Nepali Dataset.
|
20 |
+
|
21 |
+
## How to use
|
22 |
+
|
23 |
+
You can use this model directly with a pipeline for text generation.
|
24 |
+
|
25 |
+
```python
|
26 |
+
>>> from transformers import pipeline, set_seed
|
27 |
+
>>> generator = pipeline('text-generation', model='Someman/gpt2-medium-ne')
|
28 |
+
>>> set_seed(42)
|
29 |
+
>>> generator("उच्च अदालतले बिहीबार दिएको आदेशले", max_length=30, num_return_sequences=5)
|
30 |
+
|
31 |
+
[{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले महिनात्रि'},
|
32 |
+
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले बिहानैदे'},
|
33 |
+
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गिरिजाली'},
|
34 |
+
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले गरेको प्रथम त'},
|
35 |
+
{'generated_text': 'उच्च अदालतले बिहीबार दिएको आदेशले कुनै साथी'}]
|
36 |
+
```
|
37 |
+
|
38 |
+
|
39 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
43 |
+
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
|
44 |
+
model = GPT2Model.from_pretrained('Someman/gpt2-medium-ne')
|
45 |
+
text = "Replace me by any text you'd like."
|
46 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
47 |
+
output = model(**encoded_input)
|
48 |
+
```
|
49 |
+
|
50 |
+
and in TensorFlow:
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import GPT2Tokenizer, TFGPT2Model
|
54 |
+
tokenizer = GPT2Tokenizer.from_pretrained('Someman/gpt2-medium-ne')
|
55 |
+
model = TFGPT2Model.from_pretrained('Someman/gpt2-medium-ne')
|
56 |
+
text = "Replace me by any text you'd like."
|
57 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
58 |
+
output = model(encoded_input)
|
59 |
+
```
|
60 |
|
|
|
61 |
|
62 |
More information needed
|
63 |
|
64 |
## Training and evaluation data
|
65 |
|
66 |
+
Training data contains 197k Nepali sentences.
|
67 |
|
68 |
## Training procedure
|
69 |
|