update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: results
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# results
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [sshleifer/distill-pegasus-xsum-16-4](https://huggingface.co/sshleifer/distill-pegasus-xsum-16-4) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 2.4473
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 1
|
37 |
+
- eval_batch_size: 1
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- lr_scheduler_warmup_steps: 500
|
42 |
+
- num_epochs: 10
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| 7.2378 | 0.51 | 100 | 7.1853 |
|
49 |
+
| 7.2309 | 1.01 | 200 | 6.6342 |
|
50 |
+
| 6.4796 | 1.52 | 300 | 6.3206 |
|
51 |
+
| 6.2691 | 2.02 | 400 | 6.0184 |
|
52 |
+
| 5.7382 | 2.53 | 500 | 5.5754 |
|
53 |
+
| 4.9922 | 3.03 | 600 | 4.5178 |
|
54 |
+
| 3.6031 | 3.54 | 700 | 2.8579 |
|
55 |
+
| 2.5203 | 4.04 | 800 | 2.4718 |
|
56 |
+
| 2.2563 | 4.55 | 900 | 2.4128 |
|
57 |
+
| 2.1425 | 5.05 | 1000 | 2.3767 |
|
58 |
+
| 2.004 | 5.56 | 1100 | 2.3982 |
|
59 |
+
| 2.0437 | 6.06 | 1200 | 2.3787 |
|
60 |
+
| 1.9407 | 6.57 | 1300 | 2.3952 |
|
61 |
+
| 1.9194 | 7.07 | 1400 | 2.3964 |
|
62 |
+
| 1.758 | 7.58 | 1500 | 2.4056 |
|
63 |
+
| 1.918 | 8.08 | 1600 | 2.4101 |
|
64 |
+
| 1.9162 | 8.59 | 1700 | 2.4085 |
|
65 |
+
| 1.8983 | 9.09 | 1800 | 2.4058 |
|
66 |
+
| 1.6939 | 9.6 | 1900 | 2.4050 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.12.5
|
72 |
+
- Pytorch 1.10.0+cu111
|
73 |
+
- Datasets 1.15.1
|
74 |
+
- Tokenizers 0.10.3
|