update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,22 +60,62 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.01
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9761634506242906
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0813
|
35 |
+
- Accuracy: 0.9762
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.01
|
63 |
+
- num_epochs: 50
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.3323 | 1.0 | 141 | 1.3319 | 0.5187 |
|
70 |
+
| 1.1302 | 2.0 | 283 | 1.1059 | 0.5335 |
|
71 |
+
| 0.8793 | 2.99 | 424 | 0.7848 | 0.7094 |
|
72 |
+
| 0.7652 | 4.0 | 566 | 0.7255 | 0.7219 |
|
73 |
+
| 0.7708 | 4.99 | 707 | 0.5280 | 0.8173 |
|
74 |
+
| 0.6153 | 6.0 | 849 | 0.4221 | 0.8490 |
|
75 |
+
| 0.5895 | 7.0 | 991 | 0.4015 | 0.8570 |
|
76 |
+
| 0.5617 | 8.0 | 1132 | 0.2998 | 0.9001 |
|
77 |
+
| 0.517 | 9.0 | 1274 | 0.2737 | 0.9160 |
|
78 |
+
| 0.5366 | 9.99 | 1415 | 0.2229 | 0.9240 |
|
79 |
+
| 0.4645 | 11.0 | 1557 | 0.2038 | 0.9330 |
|
80 |
+
| 0.4114 | 11.99 | 1698 | 0.1851 | 0.9376 |
|
81 |
+
| 0.4528 | 13.0 | 1840 | 0.1796 | 0.9432 |
|
82 |
+
| 0.4182 | 14.0 | 1982 | 0.1578 | 0.9523 |
|
83 |
+
| 0.432 | 15.0 | 2123 | 0.1660 | 0.9421 |
|
84 |
+
| 0.4442 | 16.0 | 2265 | 0.1401 | 0.9557 |
|
85 |
+
| 0.4059 | 16.99 | 2406 | 0.1332 | 0.9591 |
|
86 |
+
| 0.3498 | 18.0 | 2548 | 0.1431 | 0.9535 |
|
87 |
+
| 0.3869 | 18.99 | 2689 | 0.1237 | 0.9512 |
|
88 |
+
| 0.3639 | 20.0 | 2831 | 0.1193 | 0.9603 |
|
89 |
+
| 0.3819 | 21.0 | 2973 | 0.1234 | 0.9557 |
|
90 |
+
| 0.3491 | 22.0 | 3114 | 0.1207 | 0.9569 |
|
91 |
+
| 0.3259 | 23.0 | 3256 | 0.1234 | 0.9591 |
|
92 |
+
| 0.3199 | 23.99 | 3397 | 0.1028 | 0.9659 |
|
93 |
+
| 0.3398 | 25.0 | 3539 | 0.1010 | 0.9603 |
|
94 |
+
| 0.3108 | 25.99 | 3680 | 0.1015 | 0.9671 |
|
95 |
+
| 0.3417 | 27.0 | 3822 | 0.1080 | 0.9614 |
|
96 |
+
| 0.3835 | 28.0 | 3964 | 0.1056 | 0.9591 |
|
97 |
+
| 0.3336 | 29.0 | 4105 | 0.1011 | 0.9637 |
|
98 |
+
| 0.3035 | 30.0 | 4247 | 0.0972 | 0.9614 |
|
99 |
+
| 0.2559 | 30.99 | 4388 | 0.0941 | 0.9659 |
|
100 |
+
| 0.378 | 32.0 | 4530 | 0.0963 | 0.9603 |
|
101 |
+
| 0.2932 | 32.99 | 4671 | 0.0916 | 0.9716 |
|
102 |
+
| 0.3072 | 34.0 | 4813 | 0.0917 | 0.9671 |
|
103 |
+
| 0.3081 | 35.0 | 4955 | 0.1025 | 0.9625 |
|
104 |
+
| 0.2724 | 36.0 | 5096 | 0.0874 | 0.9671 |
|
105 |
+
| 0.2621 | 37.0 | 5238 | 0.0847 | 0.9705 |
|
106 |
+
| 0.3521 | 37.99 | 5379 | 0.0829 | 0.9728 |
|
107 |
+
| 0.2883 | 39.0 | 5521 | 0.0860 | 0.9728 |
|
108 |
+
| 0.2617 | 39.99 | 5662 | 0.0898 | 0.9682 |
|
109 |
+
| 0.2893 | 41.0 | 5804 | 0.0877 | 0.9671 |
|
110 |
+
| 0.2994 | 42.0 | 5946 | 0.0822 | 0.9762 |
|
111 |
+
| 0.2483 | 43.0 | 6087 | 0.0834 | 0.9705 |
|
112 |
+
| 0.301 | 44.0 | 6229 | 0.0883 | 0.9694 |
|
113 |
+
| 0.2648 | 44.99 | 6370 | 0.0834 | 0.9705 |
|
114 |
+
| 0.2902 | 46.0 | 6512 | 0.0879 | 0.9648 |
|
115 |
+
| 0.299 | 46.99 | 6653 | 0.0843 | 0.9694 |
|
116 |
+
| 0.2726 | 48.0 | 6795 | 0.0920 | 0.9659 |
|
117 |
+
| 0.3252 | 49.0 | 6937 | 0.0857 | 0.9716 |
|
118 |
+
| 0.274 | 49.8 | 7050 | 0.0813 | 0.9762 |
|
119 |
|
120 |
|
121 |
### Framework versions
|